How Sentiment Indicators Improve Algorithmic Trading Performance
Autor:
Gómez-Martínez, Raúl
; Medrano-García, María Luisa
; López-López, David
; Torres-Pruñonosa, José
Fecha:
2025Palabra clave:
Revista / editorial:
Sage OpenCitación:
Gómez-Martínez, R., Medrano-García, M. L., López-López, D., & Torres-Pruñonosa, J. (2025). How Sentiment Indicators Improve Algorithmic Trading Performance. Sage Open, 15(3). https://doi.org/10.1177/21582440251369559 (Original work published 2025)Tipo de Ítem:
articleDirección web:
https://journals.sagepub.com/doi/10.1177/21582440251369559
Resumen:
This study explores the hypothesis that sentiment indicators can enhance the performance of algorithmic trading strategies. Specifically, we investigate the impact of incorporating investor sentiment metrics, such as the CNN Fear & Greed Index and cryptocurrency sentiment, on predictive accuracy and profitability. To test this hypothesis, two trading strategies are compared in the Nasdaq Mini futures market. The first strategy employs traditional technical indicators and machine learning models, whereas sentiment-based indicators are incorporated to the second one to enhance it. Backtests are conducted over the period from May 16, 2022 to December 20, 2024, to evaluate the effectiveness of sentiment signals. The results demonstrate that the sentiment-augmented strategy improves risk-adjusted returns, reduces volatility, and enhances profitability compared to the baseline model. This study provides evidence that sentiment indicators can be a valuable addition to algorithmic trading systems, offering a more stable and risk-managed approach, even though they may not always maximise net profit.
Ficheros en el ítem
Nombre: gomez-martinez-et-al-2025-how-sentiment-indicators-improve-algorithmic-trading-performance.pdf
Tamaño: 473.6Kb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 16 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 11 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Understanding confidence in banks: the role of personal characteristics and artificial intelligence
Gómez-Martínez, Raúl; Pérez-González, Benito; Medrano-García, María Luisa; Torres-Pruñonosa, Jose (Anales del Institutode Actuarios Españoles, 2024)La confianza en los bancos y las instituciones financieras es una piedra angular de la estabilidad financiera y la prosperidad económica. Este estudio investiga la relación entre las características personales y la confianza ... -
Navegando por el panorama del comercio electrónico: grupos temáticos, puntos de inflexión intelectual y patrones de ruptura en la gestión de la reputación en línea
López-López, David; Plaza-Navas, Miquel Ángel; Torres-Pruñonosa, José; F. Martínez, Luis (Investigación sobre comercio electrónico, 2024)Reconociendo los desafíos identificados en la vasta literatura que explora el panorama intelectual de la Gestión de la Reputación Online (ORM) en el ámbito del comercio electrónico, este estudio realiza un análisis ... -
How on Earth Did Spanish Banking Sell the Housing Stock?
Torres-Pruñonosa, Jose ; García-Estévez, Pablo; Raya, Josep Maria; Prado-Román, Camilo (Sage, 04/03/2022)The accumulation of properties by Spanish banks during the crisis of the first decade of the 21st century has definitely changed the housing market. An optimal house price valuation is useful to determine the bank’s actual ...





