Mostrar el registro sencillo del ítem

dc.contributor.authorGómez-Martínez, Raúl
dc.contributor.authorMedrano-García, María Luisa
dc.contributor.authorLópez-López, David
dc.contributor.authorTorres-Pruñonosa, José
dc.date2025
dc.date.accessioned2025-11-12T14:12:17Z
dc.date.available2025-11-12T14:12:17Z
dc.identifier.citationGómez-Martínez, R., Medrano-García, M. L., López-López, D., & Torres-Pruñonosa, J. (2025). How Sentiment Indicators Improve Algorithmic Trading Performance. Sage Open, 15(3). https://doi.org/10.1177/21582440251369559 (Original work published 2025)es_ES
dc.identifier.issn2158-2440
dc.identifier.issn2158-2440
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18353
dc.description.abstractThis study explores the hypothesis that sentiment indicators can enhance the performance of algorithmic trading strategies. Specifically, we investigate the impact of incorporating investor sentiment metrics, such as the CNN Fear & Greed Index and cryptocurrency sentiment, on predictive accuracy and profitability. To test this hypothesis, two trading strategies are compared in the Nasdaq Mini futures market. The first strategy employs traditional technical indicators and machine learning models, whereas sentiment-based indicators are incorporated to the second one to enhance it. Backtests are conducted over the period from May 16, 2022 to December 20, 2024, to evaluate the effectiveness of sentiment signals. The results demonstrate that the sentiment-augmented strategy improves risk-adjusted returns, reduces volatility, and enhances profitability compared to the baseline model. This study provides evidence that sentiment indicators can be a valuable addition to algorithmic trading systems, offering a more stable and risk-managed approach, even though they may not always maximise net profit.es_ES
dc.language.isoenges_ES
dc.publisherSage Openes_ES
dc.relation.ispartofseries;vol. 15, nº 3
dc.relation.urihttps://journals.sagepub.com/doi/10.1177/21582440251369559es_ES
dc.rightsopenAccesses_ES
dc.subjectalgorithmic tradinges_ES
dc.subjectsentiment indicatorses_ES
dc.subjecttechnical indicatorses_ES
dc.subjectCNN fear & greed indexes_ES
dc.subjectcryptocurrency sentimentes_ES
dc.subjectmachine learninges_ES
dc.titleHow Sentiment Indicators Improve Algorithmic Trading Performancees_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1177/21582440251369559


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem