• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • DATOS DE INVESTIGACIÓN
    • Datos de investigación: archivos...
    • Ver ítem
    •   Inicio
    • DATOS DE INVESTIGACIÓN
    • Datos de investigación: archivos...
    • Ver ítem

    Gamification in technology and design areas: a teaching innovation project in a fully online environment

    Autor: 
    Padilla-Zea, Natalia
    ;
    Verdú, Elena
    ;
    Baena-Gallé, Roberto
    Fecha: 
    2024
    Palabra clave: 
    gamification; engineering education; engagement; educational technology; higher education; motivation
    Revista / editorial: 
    Entertainment Computing
    Citación: 
    Natalia, P. Z., Elena, V., & Roberto, B. G. (2024). Gamification in technology and design areas: A teaching innovation project in a fully online environment. Entertainment Computing, 51, 100728.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/18152
    DOI: 
    10.1016/j.entcom.2024.100728
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S187595212400096X?via%3Dihub
    Resumen:
    Gallifantes and motivation’ is a teaching innovation project intended to foster students to participate in the university online campus of UNIR, a fully online university. Although students at UNIR are used to studying in an online independent way, it is well known that having a learning community and a confident-based relationship with mates enhance learning results. Intended to promote a lively interaction between students, both in the forums and in synchronous lessons, this teaching innovation project proposes gallifantes-rewarded actions during the semester in a competitive run. The 4 students with the highest numbers of gallifantes obtain 0.25, 0.5, 0.75 and 1 additional points in the final grade. In this paper, we present the different approaches followed in 3 subjects in the areas of technology and design, having a total number of 114 active students and 1164 gallifantes rewarded. The students answered a survey at the end of the process. As a conclusion, most of them supports the initiative, obtaining good results in satisfaction, motivation and engagement, while also suggesting improvement opportunities.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Datos de investigación: archivos...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    88
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Semiautomatic Grading of Short Texts for Open Answers in Higher Education 

      de-la-Fuente-Valentín, Luis ; Verdú, Elena ; Padilla-Zea, Natalia ; Villalonga, Claudia; Blanco Valencia, Xiomara Patricia ; Baldiris, Silvia (Communications in Computer and Information Science, 2022)
      Grading student activities in online courses is a time-expensive task, especially with a high number of students in the course. To avoid a bottleneck in the continuous evaluation process, quizzes with multiple choice ...
    • Toward Long-Term and Archivable Reproducibility 

      Akhlaghi, Mohammad; Infante-Sainz, Raul; Roukema, Boudewijn F.; Khellat, Mohammadreza; Valls-Gabaud, David; Baena-Galle, Roberto (Computing in science&engineering, 2021)
      Analysis pipelines commonly use high-level technologies that are popular when created, but are unlikely to be readable, executable, or sustainable in the long term. A set of criteria is introduced to address this problem: ...
    • Star-image Centering with Deep Learning: HST/WFPC2 Images 

      Casetti-Dinescu, Dana I.; Girard, Terrence M.; Baena-Galle, Roberto; Martone, Max; Schwendemann, Kate (Publications of the Astronomical Society of the Pacific, 2023)
      A deep learning (DL) algorithm is built and tested for its ability to determine centers of star images in HST/WFPC2 exposures, in filters F555W and F814W. These archival observations hold great potential for proper-motion ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja