• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Cosine Additive Angular Margin Loss for Breast Cancer Classification in Histopathological Images with Small AI Systems

    Autor: 
    Alirezazadeh, Pendar
    ;
    Dornaika, Fadi
    ;
    Moujahid, Abdelmalik
    Fecha: 
    2025
    Palabra clave: 
    breast cancer classification; deep learning; angular margin-based softmax losses; histopathological image; discriminative feature embedding
    Revista / editorial: 
    ACM Transactions on Intelligent Systems and Technology
    Citación: 
    Alirezazadeh, P., Dornaika, F., & Moujahid, A. Cosine Additive Angular Margin Loss for Breast Cancer Classification in Histopathological Images with Small AI Systems. ACM Transactions on Intelligent Systems and Technology.
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18128
    DOI: 
    https://doi.org/10.1145/3718093
    Dirección web: 
    https://dl.acm.org/doi/10.1145/3718093
    Open Access
    Resumen:
    Breast cancer claims thousands of lives annually, emphasizing the need for swift and accurate histopathology image classification to expedite diagnoses. Despite the rapid evolution of Convolutional Neural Networks (CNNs), the conventional softmax loss lacks the robustness required to discern intricate features in breast cancer classification from histopathological images. In response, our study introduces the Cosine Additive Angular Margin Loss (CAAM) to address this limitation and achieve both enhanced intra-class cohesion and distinct inter-class boundaries concurrently. By normalizing weight and feature vectors, we eliminate radial variations before imposing angular and cosine margin constraints on the softmax angle space. This process maximizes the decision margin, resulting in a discriminative feature embedding. Extensive experiments conducted on the BreakHis dataset demonstrate that CAAM consistently outperforms existing methods in breast cancer histopathological image classification. Our findings underscore the efficacy of angular margin-based softmax losses in bolstering the performance of advanced CNN models for breast cancer classification.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ACM_3718093_aff_unir.pdf
    Tamaño: 39.36Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    52
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    9

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Modeling and Calibration for Some Stochastic Differential Models 

      Moujahid, Abdelmalik; Vadillo, Fernando (Fractal and Fractional, 2022)
      In many scientific fields, the dynamics of the system are often known, and the main challenge is to estimate the parameters that model the behavior of the system. The question then arises whether one can use experimental ...
    • Impact of Delay on Stochastic Predator-Prey Models 

      Moujahid, Abdelmalik; Vadillo, Fernando (Symmetry, 2023)
      Ordinary differential equations (ODE) have long been an important tool for modelling and understanding the dynamics of many real systems. However, mathematical modelling in several areas of the life sciences requires the ...
    • Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification 

      Alirezazadeh, Pendar; Dornaika, Fadi; Moujahid, Abdelmalik (Electronics (Switzerland), 2023)
      When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja