• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification

    Autor: 
    Alirezazadeh, Pendar
    ;
    Dornaika, Fadi
    ;
    Moujahid, Abdelmalik
    Fecha: 
    2023
    Palabra clave: 
    BreakHis; breast cancer image classification; compactness and separability; deep learning; discriminative deep embedding; margin penalties on angular softmax losses; Scopus; JCR; WOS
    Revista / editorial: 
    Electronics (Switzerland)
    Citación: 
    Alirezazadeh, P.; Dornaika, F.; Moujahid, A. Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification. Electronics 2023, 12, 4356. https://doi.org/10.3390/ electronics12204356
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15671
    DOI: 
    https://doi.org/10.3390/electronics12204356
    Dirección web: 
    https://www.mdpi.com/2079-9292/12/20/4356
    Open Access
    Resumen:
    When considering a large dataset of histopathologic breast images captured at various magnification levels, the process of distinguishing between benign and malignant cancer from these images can be time-intensive. The automation of histopathological breast cancer image classification holds significant promise for expediting pathology diagnoses and reducing the analysis time. Convolutional neural networks (CNNs) have recently gained traction for their ability to more accurately classify histopathological breast cancer images. CNNs excel at extracting distinctive features that emphasize semantic information. However, traditional CNNs employing the softmax loss function often struggle to achieve the necessary discriminatory power for this task. To address this challenge, a set of angular margin-based softmax loss functions have emerged, including angular softmax (A-Softmax), large margin cosine loss (CosFace), and additive angular margin (ArcFace), each sharing a common objective: maximizing inter-class variation while minimizing intra-class variation. This study delves into these three loss functions and their potential to extract distinguishing features while expanding the decision boundary between classes. Rigorous experimentation on a well-established histopathological breast cancer image dataset, BreakHis, has been conducted. As per the results, it is evident that CosFace focuses on augmenting the differences between classes, while A-Softmax and ArcFace tend to emphasize augmenting within-class variations. These observations underscore the efficacy of margin penalties on angular softmax losses in enhancing feature discrimination within the embedding space. These loss functions consistently outperform softmax-based techniques, either by widening the gaps among classes or enhancing the compactness of individual classes.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Chasing_a_Better_Decision_Margin_for_Discriminative_Histopathological.pdf
    Tamaño: 8.486Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    53
    87
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    12
    48

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Modeling and Calibration for Some Stochastic Differential Models 

      Moujahid, Abdelmalik; Vadillo, Fernando (Fractal and Fractional, 2022)
      In many scientific fields, the dynamics of the system are often known, and the main challenge is to estimate the parameters that model the behavior of the system. The question then arises whether one can use experimental ...
    • Impact of Delay on Stochastic Predator-Prey Models 

      Moujahid, Abdelmalik; Vadillo, Fernando (Symmetry, 2023)
      Ordinary differential equations (ODE) have long been an important tool for modelling and understanding the dynamics of many real systems. However, mathematical modelling in several areas of the life sciences requires the ...
    • Advanced unsupervised learning: a comprehensive overview of multi-view clustering techniques 

      Moujahid, Abdelmalik; Fadi, Dornaika (Artificial Intelligence Revie, 2025)
      Machine learning techniques face numerous challenges to achieve optimal performance. These include computational constraints, the limitations of single-view learning algorithms and the complexity of processing large datasets ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja