Mostrar el registro sencillo del ítem

dc.contributor.authorAlirezazadeh, Pendar
dc.contributor.authorDornaika, Fadi
dc.contributor.authorMoujahid, Abdelmalik
dc.date2025
dc.date.accessioned2025-07-09T13:21:13Z
dc.date.available2025-07-09T13:21:13Z
dc.identifier.citationAlirezazadeh, P., Dornaika, F., & Moujahid, A. Cosine Additive Angular Margin Loss for Breast Cancer Classification in Histopathological Images with Small AI Systems. ACM Transactions on Intelligent Systems and Technology.es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18128
dc.description.abstractBreast cancer claims thousands of lives annually, emphasizing the need for swift and accurate histopathology image classification to expedite diagnoses. Despite the rapid evolution of Convolutional Neural Networks (CNNs), the conventional softmax loss lacks the robustness required to discern intricate features in breast cancer classification from histopathological images. In response, our study introduces the Cosine Additive Angular Margin Loss (CAAM) to address this limitation and achieve both enhanced intra-class cohesion and distinct inter-class boundaries concurrently. By normalizing weight and feature vectors, we eliminate radial variations before imposing angular and cosine margin constraints on the softmax angle space. This process maximizes the decision margin, resulting in a discriminative feature embedding. Extensive experiments conducted on the BreakHis dataset demonstrate that CAAM consistently outperforms existing methods in breast cancer histopathological image classification. Our findings underscore the efficacy of angular margin-based softmax losses in bolstering the performance of advanced CNN models for breast cancer classification.es_ES
dc.language.isoen_USes_ES
dc.publisherACM Transactions on Intelligent Systems and Technologyes_ES
dc.relation.urihttps://dl.acm.org/doi/10.1145/3718093es_ES
dc.rightsopenAccesses_ES
dc.subjectbreast cancer classificationes_ES
dc.subjectdeep learninges_ES
dc.subjectangular margin-based softmax losseses_ES
dc.subjecthistopathological imagees_ES
dc.subjectdiscriminative feature embeddinges_ES
dc.titleCosine Additive Angular Margin Loss for Breast Cancer Classification in Histopathological Images with Small AI Systemses_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1145/3718093


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem