• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters

    Autor: 
    Verdú, Elena
    Fecha: 
    2023
    Palabra clave: 
    short-term forecasting; electricity load; long short term-memory; reinforcement learning; hyper parameters; Emerging; Scopus
    Revista / editorial: 
    Evolutionary Intelligence
    Citación: 
    Nguyen, N.A., Dang, T.D., Verdú, E. et al. Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters. Evol. Intel. 16, 1729–1746 (2023)
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16640
    DOI: 
    https://doi.org/10.1007/s12065-023-00869-5
    Resumen:
    Electricity load forecasting is an essential operation of the power system. Deep learning is used to improve accurate electricity load forecasting. In this study, combining Long short-term memory and reinforcement learning are proposed to encourage the advantage of a single approach for forecasting. Importance input features, including the mutual feature of electricity load, are used to increase accuracy. First, multi-time series input can handle by Long short-term memory and the addition of features supports to the load feature will make the model better efficient. Because the LSTM model is quite complex, choosing a good set of hyperparameters is difficult. Therefore, the purpose of using reinforcement learning is to optimize hyper-parameters of the Long short-term memory model. The proposed model is the combination of Long-short term memory and reinforcement learning. The proposed model will be applied in two electricity load data sets, the real-life data of Vietnam Electricity and the other public data set. In one day ahead forecasting, the proposed model archives superior performance than the benchmark.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    63
    76
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Clustering analysis for automatic certification of LMS strategies in a university virtual campus 

      Regueras, Luisa M; Verdú, María J; Castro, Juan P de; Verdú, Elena (IEEE Access, 2019)
      In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement ...
    • Integration of an intelligent tutoring system in a course of computer network design 

      Verdú, Elena ; Regueras, Luisa M; Gal, Eran; Castro, Juan P de; Verdú, María J; Kohen-Vacs, Dan (Educational Technology Research and Development, 06/2017)
      INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning ...
    • A semantic MediaWiki-based approach for the collaborative development of pedagogically meaningful learning content annotations 

      Zander, Stefan; Swertz, Christian; Verdú, Elena ; Verdú, María J; Henning, Peter A (Lecture Notes in Computer Science, 2016)
      In this work, we present an approach that allows educational resources to be collaboratively authored and annotated with well-defined pedagogical semantics using Semantic MediaWiki as collaborative knowledge engineering ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja