• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Clustering analysis for automatic certification of LMS strategies in a university virtual campus

    Autor: 
    Regueras, Luisa M
    ;
    Verdú, María J
    ;
    Castro, Juan P de
    ;
    Verdú, Elena (1)
    Fecha: 
    2019
    Palabra clave: 
    clustering methods; data mining; learning systems; machine learning; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9792
    DOI: 
    https://doi.org/10.1109/ACCESS.2019.2943212
    Dirección web: 
    https://ieeexplore.ieee.org/document/8846693
    Open Access
    Resumen:
    In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement to face-to-face classes in order to improve the student learning process. However, not all teachers use LMS in the same way and universities lack the tools to measure and quantify their use effectively. This study proposes a method to automatically classify and certify teacher competence in LMS from the LMS data. Objective knowledge of actual LMS use will help the university and its faculty to make strategic decisions. The information produced will be used to support teachers and institutions in the classification and design of courses by showing the different LMS usage patterns of teachers and students. In this study, we processed the structure of 3,303 courses and two million interactive events to obtain a classification model based on LMS usage patterns in blended learning. Three clustering methods were compared to find which one was best suited to our problem. The resulting model is clearly related to different course archetypes that can be used to describe the actual use of LMS. We also performed analyses of prediction accuracy and of course typologies across course attributes (academic disciplines and level and academic performance indicators). The results of this study will be used as the basis for an automatic expert system that automatically certifies teacher competence in LMS as evidenced in each course.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    75
    46
    23
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Integration of an intelligent tutoring system in a course of computer network design 

      Verdú, Elena (1); Regueras, Luisa M; Gal, Eran; Castro, Juan P de; Verdú, María J; Kohen-Vacs, Dan (Educational Technology Research and Development, 06/2017)
      INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning ...
    • Effects of competitive learning tools on medical students: A case study 

      Corell, Alfredo; Regueras, Luisa M; Verdú, Elena (1); de Castro, Juan P (08/03/2018)
      Objective Competitive learning techniques are being successfully used in courses of different disciplines. However, there is still a significant gap in analyzing their effects in medical students competing individually. ...
    • A semantic MediaWiki-based approach for the collaborative development of pedagogically meaningful learning content annotations 

      Zander, Stefan; Swertz, Christian; Verdú, Elena (1); Verdú, María J; Henning, Peter A (Lecture Notes in Computer Science, 2016)
      In this work, we present an approach that allows educational resources to be collaboratively authored and annotated with well-defined pedagogical semantics using Semantic MediaWiki as collaborative knowledge engineering ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja