Mostrar el registro sencillo del ítem

dc.contributor.authorVerdú, Elena
dc.date2023
dc.date.accessioned2024-05-23T11:51:03Z
dc.date.available2024-05-23T11:51:03Z
dc.identifier.citationNguyen, N.A., Dang, T.D., Verdú, E. et al. Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters. Evol. Intel. 16, 1729–1746 (2023)es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16640
dc.description.abstractElectricity load forecasting is an essential operation of the power system. Deep learning is used to improve accurate electricity load forecasting. In this study, combining Long short-term memory and reinforcement learning are proposed to encourage the advantage of a single approach for forecasting. Importance input features, including the mutual feature of electricity load, are used to increase accuracy. First, multi-time series input can handle by Long short-term memory and the addition of features supports to the load feature will make the model better efficient. Because the LSTM model is quite complex, choosing a good set of hyperparameters is difficult. Therefore, the purpose of using reinforcement learning is to optimize hyper-parameters of the Long short-term memory model. The proposed model is the combination of Long-short term memory and reinforcement learning. The proposed model will be applied in two electricity load data sets, the real-life data of Vietnam Electricity and the other public data set. In one day ahead forecasting, the proposed model archives superior performance than the benchmark.es_ES
dc.language.isoenges_ES
dc.publisherEvolutionary Intelligencees_ES
dc.relation.ispartofseries;vol. 16
dc.rightsrestrictedAccesses_ES
dc.subjectshort-term forecastinges_ES
dc.subjectelectricity loades_ES
dc.subjectlong short term-memoryes_ES
dc.subjectreinforcement learninges_ES
dc.subjecthyper parameterses_ES
dc.subjectEmerginges_ES
dc.subjectScopuses_ES
dc.titleShort-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameterses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s12065-023-00869-5


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem