Predicting emergency health care demands due to respiratory diseases
Autor:
Arias, J. C.
; Ramos, M. I.
; Cubillas, Juan José
Fecha:
2023Palabra clave:
Revista / editorial:
International Journal of Medical InformaticsCitación:
Arias, J. C., Ramos, M. I., & Cubillas, J. J. (2023). Predicting emergency health care demands due to respiratory diseases. International Journal of Medical Informatics, 177, 105163.Tipo de Ítem:
Articulo Revista IndexadaResumen:
Background: Timely care in the health sector is essential for the recovery of patients, and even more so in the case of a health emergency. In these cases, appropriate management of human and technical resources is essential. These are limited and must be mobilised in an optimal and efficient manner.
Objective: This paper analyses the use of the health emergency service in a city, Jaén, in the south of Spain. The study is focused on the most recurrent case in this service, respiratory diseases.
Methods: machine Learning algorithms are used in which the input variables are multisource data and the target attribute is the prediction of the number of health emergency demands that will occur for a selected date. Health, social, economic, environmental, and geospatial data related to each of the emergency demands were integrated and related. Linear and nonlinear regression algorithms were used: support vector machine (SVM) with linear kernel and generated linear model (GLM), and the nonlinear SVM with Gaussian kernel.
Results: Predictive models of emergency demand due to respiratory disseases were generated with am absolute error better than 35 %.
Conclusions: This model helps to make decisions on the efficient sizing of emergency health resources to manage and respond in the shortest possible time to patients with respiratory diseases requiring urgent care in the city of Jaén.
Ficheros en el ítem
Nombre: Predicting emergency health care demands due to respiratory diseases.pdf
Tamaño: 2.833Mb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
56 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
10 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Optimising Health Emergency Resource Management from Multi-Model Databases
Arias, J.C.; Cubillas, Juan José; Ramos, Maria I. (Electronics (Switzerland), 2022)The health care sector is one of the most sensitive sectors in our society, and it is believed that the application of specific and detailed database creation and design techniques can improve the quality of patient care. ... -
Optimización de la calidad asistencial de urgencias y emergencias mediante bases de datos multidisciplinares
Arias, J.C.; Cubillas, Juan José; Ramos, Maria I.; Feito, F.R. (Iberian Conference on Information Systems and Technologies, CISTI, 2022)En la actualidad una de las técnicas más importantes para mejorar la calidad en la asistencia del paciente es el análisis exhaustivo de todos los aspectos de dicha asistencia mediante la utilización de bases de datos ... -
Use of 3D models as a didactic resource in archaeology. A case study analysis
Arias, Francisco; Enriquez, Carlos; Jurado, Juan Manuel; Ortega, Lydia; Romero-Manchado, Antonio; Cubillas, Juan José (Heritage Science, 2022)The generation of 3D models through Terrestrial Laser Scanning has proved to be valuable tools for the study, documentation and recreation of archaeological remains. In this context, it is described how to generate a ...