• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Predicting emergency health care demands due to respiratory diseases

    Autor: 
    Arias, J. C.
    ;
    Ramos, M. I.
    ;
    Cubillas, Juan José
    Fecha: 
    2023
    Palabra clave: 
    machine learning; prediction; health emergency service; geospatial data; JCR; Scopus
    Revista / editorial: 
    International Journal of Medical Informatics
    Citación: 
    Arias, J. C., Ramos, M. I., & Cubillas, J. J. (2023). Predicting emergency health care demands due to respiratory diseases. International Journal of Medical Informatics, 177, 105163.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16603
    DOI: 
    https://doi.org/10.1016/j.ijmedinf.2023.105163
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S1386505623001818?via%3Dihub
    Open Access
    Resumen:
    Background: Timely care in the health sector is essential for the recovery of patients, and even more so in the case of a health emergency. In these cases, appropriate management of human and technical resources is essential. These are limited and must be mobilised in an optimal and efficient manner. Objective: This paper analyses the use of the health emergency service in a city, Jaén, in the south of Spain. The study is focused on the most recurrent case in this service, respiratory diseases. Methods: machine Learning algorithms are used in which the input variables are multisource data and the target attribute is the prediction of the number of health emergency demands that will occur for a selected date. Health, social, economic, environmental, and geospatial data related to each of the emergency demands were integrated and related. Linear and nonlinear regression algorithms were used: support vector machine (SVM) with linear kernel and generated linear model (GLM), and the nonlinear SVM with Gaussian kernel. Results: Predictive models of emergency demand due to respiratory disseases were generated with am absolute error better than 35 %. Conclusions: This model helps to make decisions on the efficient sizing of emergency health resources to manage and respond in the shortest possible time to patients with respiratory diseases requiring urgent care in the city of Jaén.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Predicting emergency health care demands due to respiratory diseases.pdf
    Tamaño: 2.833Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    84
    42
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    20

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Optimising Health Emergency Resource Management from Multi-Model Databases 

      Arias, J.C.; Cubillas, Juan José; Ramos, Maria I. (Electronics (Switzerland), 2022)
      The health care sector is one of the most sensitive sectors in our society, and it is believed that the application of specific and detailed database creation and design techniques can improve the quality of patient care. ...
    • Optimización de la calidad asistencial de urgencias y emergencias mediante bases de datos multidisciplinares 

      Arias, J.C.; Cubillas, Juan José; Ramos, Maria I.; Feito, F.R. (Iberian Conference on Information Systems and Technologies, CISTI, 2022)
      En la actualidad una de las técnicas más importantes para mejorar la calidad en la asistencia del paciente es el análisis exhaustivo de todos los aspectos de dicha asistencia mediante la utilización de bases de datos ...
    • Use of 3D models as a didactic resource in archaeology. A case study analysis 

      Arias, Francisco; Enriquez, Carlos; Jurado, Juan Manuel; Ortega, Lydia; Romero-Manchado, Antonio; Cubillas, Juan José (Heritage Science, 2022)
      The generation of 3D models through Terrestrial Laser Scanning has proved to be valuable tools for the study, documentation and recreation of archaeological remains. In this context, it is described how to generate a ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja