Optimización de la calidad asistencial de urgencias y emergencias mediante bases de datos multidisciplinares
Autor:
Arias, J.C.
; Cubillas, Juan José
; Ramos, Maria I.
; Feito, F.R.
Fecha:
2022Palabra clave:
Revista / editorial:
Iberian Conference on Information Systems and Technologies, CISTITipo de Ítem:
conferenceObjectDirección web:
https://ieeexplore.ieee.org/document/9820109Resumen:
En la actualidad una de las técnicas más importantes
para mejorar la calidad en la asistencia del paciente es el análisis
exhaustivo de todos los aspectos de dicha asistencia mediante la
utilización de bases de datos específicas y detalladas. Se ha creado
una base de datos capaz de integrar y relacionar todos los aspectos
que afectan directa e indirectamente a las asistencias o
emergencias realizadas en la provincia de Jaén (Jaen city,
Andalusian, Spain), en un periodo de ocho años. Para ello, se ha
almacenado y relacionado la información sanitaria, social,
económica, medioambiental y geográfica de cada asistencia. El alto
nivel de interrelación que existe entre todas las variables que
intervienen en la asistencia al paciente, ha sido empleado para
analizar y predecir el número y tipo de asistencias que aparecerán
en el futuro, así como gestionar de forma eficaz todos los recursos
que participan en dichas asistencias.
Descripción:
At present, one of the most important techniques for
improving the quality of patient care is the exhaustive analysis of
all aspects of such care through the use of specific and detailed
databases. A database capable of integrating and relating all the
aspects that directly and indirectly affect the assistance or
emergencies carried out in the province of Jaén (Jaen city,
Andalusian, Spain), over a period of eight years, has been created.
For this purpose, health, social, economic, environmental and
geographical information has been stored and related to each
assistance. The high level of interrelation that exists between all
the variables involved in patient care has been used to analyse and
predict the number and type of care that will appear in the future,
as well as to efficiently manage all the resources involved in such
care.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
47 |
74 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain
Cubillas, Juan José; Ramos, Maria I.; Jurado, Juan Manuel; Feito, F.R. (Agriculture, 2022)Predictive systems are a crucial tool in management and decision-making in any productive sector. In the case of agriculture, it is especially interesting to have advance information on the profitability of a farm. In this ... -
Use of Data Mining to Predict the Influx of Patients to Primary Healthcare Centres and Construction of an Expert System
Cubillas, Juan José; Ramos, Maria I.; Feito, F.R. (Applied Sciences (Switzerland), 2022)In any productive sector, predictive tools are crucial for optimal management and decision-making. In the health sector, it is especially important to have information available in advance, as this not only means optimizing ... -
Optimising Health Emergency Resource Management from Multi-Model Databases
Arias, J.C.; Cubillas, Juan José; Ramos, Maria I. (Electronics (Switzerland), 2022)The health care sector is one of the most sensitive sectors in our society, and it is believed that the application of specific and detailed database creation and design techniques can improve the quality of patient care. ...