• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Hybrid machine learning techniques in the management of harmful algal blooms impact

    Autor: 
    Molares-Ulloa, Andres
    ;
    Rivero, Daniel
    ;
    Gil Ruiz, Jesús
    ;
    Fernandez-Blanco, Enrique
    ;
    de-la-Fuente-Valentín, Luis
    Fecha: 
    2023
    Palabra clave: 
    aquaculture; biotoxins; harmful algal blooms; hybrid techniques; machine learning; Scopus; JCR
    Revista / editorial: 
    Computers and Electronics in Agriculture
    Citación: 
    Molares-Ulloa, A., Rivero, D., Ruiz, J. G., Fernandez-Blanco, E., & de-la-Fuente-Valentín, L. (2023). Hybrid machine learning techniques in the management of harmful algal blooms impact. Computers and Electronics in Agriculture, 211, 107988.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16117
    DOI: 
    https://doi.org/10.1016/j.compag.2023.107988
    Open Access
    Resumen:
    Harmful algal blooms (HABs) are episodes of high concentrations of algae that are potentially toxic for human consumption. Mollusc farming can be affected by HABs because, as filter feeders, they can accumulate high concentrations of marine biotoxins in their tissues. To avoid the risk to human consumption, harvesting is prohibited when toxicity is detected. At present, the closure of production areas is based on expert knowledge and the existence of a predictive model would help when conditions are complex and sampling is not possible. Although the concentration of toxin in meat is the method most commonly used by experts in the control of shellfish production areas, it is rarely used as a target by automatic prediction models. This is largely due to the irregularity of the data due to the established sampling programs. As an alternative, the activity status of production areas has been proposed as a target variable based on whether mollusc meat has a toxicity level below or above the legal limit. This new option is the most similar to the actual functioning of the control of shellfish production areas. For this purpose, we have made a comparison between hybrid machine learning models like Neural-Network-Adding Bootstrap (BAGNET) and Discriminative Nearest Neighbor Classification (SVM-KNN) when estimating the state of production areas. The study has been carried out in several estuaries with different levels of complexity in the episodes of algal blooms to demonstrate the generalization capacity of the models in bloom detection. As a result, we could observe that, with an average recall value of 93.41% and without dropping below 90% in any of the estuaries, BAGNET outperforms the other models both in terms of results and robustness.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Hybrid_machine_learning_techniques_in_the_management.pdf
    Tamaño: 1.413Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    75
    43
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    65
    49

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Semiautomatic Grading of Short Texts for Open Answers in Higher Education 

      de-la-Fuente-Valentín, Luis ; Verdú, Elena ; Padilla-Zea, Natalia ; Villalonga, Claudia; Blanco Valencia, Xiomara Patricia ; Baldiris, Silvia (Communications in Computer and Information Science, 2022)
      Grading student activities in online courses is a time-expensive task, especially with a high number of students in the course. To avoid a bottleneck in the continuous evaluation process, quizzes with multiple choice ...
    • Emerging Technologies Landscape on Education. A review 

      de-la-Fuente-Valentín, Luis; Carrasco, Aurora; Konya, Kinga; Burgos, Daniel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2013)
      This paper presents a desk research that analysed available recent studies in the field of Technology Enhanced Learning. The desk research is focused on work produced in the frame of FP6 and FP7 European programs, in the ...
    • Learning Management Systems Activity Records for Students' Assessment of Generic Skills 

      de-la-Fuente-Valentín, Luis ; Ortega-Gómez, Miguel ; Dodero, Juan Manuel; Burgos, Daniel ; Balderas, Antonio (IEEE Access, 2018)
      Students' acquisition of generic skills is a key to their incorporation into the job world. However, teachers encounter several difficulties when measuring their students' performance in generic skills. These difficulties ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja