• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Artificial Intelligent Application in Project Management: An Algorithm Comparison for Solar Plants Planning Construction

    Autor: 
    López Ferreiro, Manuel Ángel
    ;
    Gil Ruiz, Jesús
    ;
    García García, Óscar
    ;
    de-la-Fuente-Valentín, Luis
    Fecha: 
    2025
    Palabra clave: 
    adaptive neuro-fuzzy inference; project planning; optimization; neuroevolution; construction schedule; artificial intelligence
    Revista / editorial: 
    Expert Systems
    Citación: 
    López Ferreiro, M. Á., J. G. Ruiz, Ó. García, and L. De La Fuente Valentín. 2025. “ Artificial Intelligent Application in Project Management: An Algorithm Comparison for Solar Plants Planning Construction.” Expert Systems 42, no. 9: e70105. https://doi.org/10.1111/exsy.70105.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/18366
    DOI: 
    https://doi.org/10.1111/exsy.70105
    Dirección web: 
    https://onlinelibrary.wiley.com/doi/10.1111/exsy.70105
    Open Access
    Resumen:
    Construction planning is a critical and complex phase in the deployment of large-scale renewable energy infrastructure. This study applies artificial intelligence techniques to a domain-specific problem that has traditionally relied on expert judgement: the generation of detailed construction schedules for photovoltaic power plants. As renewable generation is a key part to meet the challenges of energy transition, the implementation of large projects has increased in recent years and this trend is expected to continue in the future. The main difficulty in meeting construction deadlines is the elaboration of an adequate planning. A tool that automatically generates schedules can be of great help to set up an initial baseline planning. To this end, this work compares five artificial intelligence techniques, on a data set consisting of real examples of successfully completed projects. The evaluation of the results obtained on test data shows that Adaptive Neuro-Fuzzy Inference System (ANFIS) is the technique that obtains the best performance in all error metrics, although it entails a high computational cost. The model thus obtained manages to generate a complete construction schedule with an error of 8% of the total duration. The use of metrics as MAE, MSE and provides a robust understanding of prediction accuracy, variability, and fit. These metrics are commonly used in project planning evaluations and help interpret model behaviour under different error profiles. Additionally, the resulting 8% total duration error implies a deviation of around 24 days in a 300-day project, which is highly actionable in real-world solar project management. The findings not only demonstrate the feasibility of using AI for solar construction planning, but also lay the groundwork for the development of intelligent software tools or platforms that could support planners in the renewable energy sector. While this study focuses on photovoltaic plants, the approach is extendable to other power plants as wind farms, combined-cycle or nuclear plants, or even to other construction projects.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Expert Systems - 2025 - López Ferreiro - Artificial Intelligent Application in Project Management An Algorithm Comparison-1.pdf
    Tamaño: 2.764Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    37
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    7

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Hybrid machine learning techniques in the management of harmful algal blooms impact 

      Molares-Ulloa, Andres; Rivero, Daniel; Gil Ruiz, Jesús; Fernandez-Blanco, Enrique; de-la-Fuente-Valentín, Luis (Computers and Electronics in Agriculture, 2023)
      Harmful algal blooms (HABs) are episodes of high concentrations of algae that are potentially toxic for human consumption. Mollusc farming can be affected by HABs because, as filter feeders, they can accumulate high ...
    • Prediction of footwear demand using Prophet and SARIMA 

      Negre, Pablo; Alonso, Ricardo S.; Prieto, Javier; García, Óscar; de-la-Fuente-Valentín, Luis (Expert Systems with Applications, 2024)
      In an increasingly globalized market, where world container traffic since 2000 has almost quadrupled, the prediction of demand is an element of great importance for the optimal business development of a company. This work ...
    • Applicability domains of neural networks for toxicity prediction 

      Pérez-Santín, Efrén; de-la-Fuente-Valentín, Luis; González García, Marian; Segovia Bravo, Kharla Andreina; López Hernández, Fernando Carlos; López Sánchez, José Ignacio (AIMS Mathematics, 2023)
      In this paper, the term “applicability domain” refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja