• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Successful pandemic management through computer science: a case study of a financial corporation with workers on premises

    Autor: 
    Partida-Hanon, Angelica
    ;
    Díaz-Garrido, Ramón
    ;
    Mendiguren-Santiago, José María
    ;
    Gómez-Paredes, Laura
    ;
    Muñoz-Gutiérrrez, Juan
    ;
    Miguel-Rodríguez, María Antonia
    ;
    Reinoso-Barbero, Luis
    Fecha: 
    2023
    Palabra clave: 
    COVID-19; epidemiology; health informatics; information management; occupational and industrial medicine; Scopus; JCR
    Revista / editorial: 
    Frontiers in Public Health
    Citación: 
    Partida-Hanon A, Díaz-Garrido R, Mendiguren-Santiago JM, Gómez-Paredes L, Muñoz-Gutiérrrez J, Miguel-Rodríguez MA and Reinoso-Barbero L (2023) Successful pandemic management through computer science: a case study of a financial corporation with workers on premises. Front. Public Health 11:1208751. doi: 10.3389/fpubh.2023.1208751
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15815
    DOI: 
    https://doi.org/10.3389/fpubh.2023.1208751
    Dirección web: 
    https://www.frontiersin.org/articles/10.3389/fpubh.2023.1208751/full
    Open Access
    Resumen:
    Background: In November 2019, an infectious agent that caused a severe acute respiratory illness was first detected in China. Its rapid spread resulted in a global lockdown with negative economic impacts. In this regard, we expose the solutions proposed by a multinational financial institution that maintained their workers on premises, so this methodology can be applied to possible future health crisis. Objectives: To ensure a secure workplace for the personnel on premises employing biomedical prevention measures and computational tools. Methods: Professionals were subjected to recurrent COVID-19 diagnostic tests during the pandemic. The sanitary team implemented an individual following to all personnel and introduced the information in databases. The data collected were used for clustering algorithms, decision trees, and networking diagrams to predict outbreaks in the workplace. Individualized control panels assisted the decision-making process to increase, maintain, or relax restrictive measures. Results: 55,789 diagnostic tests were performed. A positive correlation was observed between the cumulative incidence reported by Madrid’s Ministry of Health and the headcount. No correlation was observed for occupational infections, representing 1.9% of the total positives. An overall 1.7% of the cases continued testing positive for COVID-19 after 14 days of quarantine. Conclusion: Based on a combined approach of medical and computational science tools, we propose a management model that can be extended to other industries that can be applied to possible future health crises. This work shows that this model resulted in a safe workplace with a low probability of infection among workers during the pandemic.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Successful_pandemic_management_through_computer_science.pdf
    Tamaño: 1.386Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    100
    53
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    24
    12

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Occupational injuries in workers of a Spanish bank 

      Reinoso-Barbero, Luis; Pardillos, L.; Romero-Paredes, M-C.; Díaz-Garrido, Ramón; Mendiguren-Santiago, José María; Gieco, A.; Gómez-Gallego, Felix (Occupational Medicine, 2023)
      BACKGROUND: In 2017, 69 108 work-related traffic injuries with medical leave were documented, constituting 12% of all occupational injuries (OI) in Spain. AIMS: The aim of this study was to describe OI within a Spanish ...
    • Estilo de vida, sobrepeso y obesidad en los trabajadores españoles: variables relacionadas 

      Vicente-Herrero, Mª Teofila; Ramirez-Iniguez de la Torre, Mª Victoria; Capdevila Garcia, Luisa; Partida-Hanon, Angelica; Reinoso-Barbero, Luis; Lopez Gonzalez, Angel Arturo (Medicina Balear, 2022)
      Objetivo: Evaluar los hábitos de vida relacionados con alimentación y actividad física en trabajadores y su impacto en el riesgo cardiovascular, metabólico y hepático relacionándolos con variables sociodemográficas y ...
    • Prevalencia de sobrepeso y obesidad en población laboral española durante la pandemia Covid-19. Indicadores de adiposidad y variables relacionadas 

      Vicente-Herrero, Mª Teofila; Ramirez-Iniguez de la Torre, Mª Victoria; Capdevila Garcia, Luisa; Partida-Hanon, Angelica; Reinoso-Barbero, Luis; Lopez Gonzalez, Angel Arturo (Medicina Balear, 2022)
      Introducción: La obesidad es una enfermedad multifactorial y compleja, siendo el Índice de Masa Corporal (IMC) el método estandarizado utilizado para definir y evaluar el sobrepeso u obesidad en los estudios epidemiológicos, ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja