• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Video anomaly detection system using deep convolutional and recurrent models

    Autor: 
    Qasim Gandapur, Maryam
    ;
    Verdú, Elena
    Fecha: 
    2023
    Palabra clave: 
    anomaly detection; CNN; deep learning; ResNet; simple recurrent unit (SRU); UCF-Crime; video surveillance; Scopus; Emerging
    Revista / editorial: 
    Results in Engineering
    Citación: 
    Qasim, M., & Verdu, E. (2023). Video anomaly detection system using deep convolutional and recurrent models. Results in Engineering, 18, 101026.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15510
    DOI: 
    https://doi.org/10.1016/j.rineng.2023.101026
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S2590123023001536?via%3Dihub
    Open Access
    Resumen:
    Automatic identification of anomalies in video surveillance is an interesting research field. Even though interactive multimedia anomaly detection algorithms have been developed, it is still hard for video surveillance to find unusual things like illegal activities and crimes. In this study, a deep convolutional neural network (CNN) and a simple recurrent unit (SRU) are used to build an automated system that can find anomalies in videos. The ResNet architecture takes high-level feature representations from the video frames that come in, while the SRU collects temporal features. The SRU has expressive recurrence and allows for highly parallelized implementation, which makes the video anomaly detection system more accurate. In the study, three models to detect anomalies are suggested as ResNet18 + SRU, ResNet34 + SRU, and ResNet50 + SRU, respectively. The suggested models are examined using the UCF-Crime dataset. This study made a clear distinction between normal and unusual actions, showing that CNN + SRU were able to put each unusual action in the right category. Using the UCF-Crime dataset, ResNet18 + SRU achieved 88.92% accuracy, ResNet34 + SRU achieved 89.34% accuracy, and ResNet50 + SRU achieved 91.24% accuracy. Furthermore, the proposed models demonstrated significantly higher performance accuracy and outscored the comparable deep learning models.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    105
    149
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Clustering analysis for automatic certification of LMS strategies in a university virtual campus 

      Regueras, Luisa M; Verdú, María J; Castro, Juan P de; Verdú, Elena (IEEE Access, 2019)
      In recent years, the use of Learning Management Systems (LMS) has grown considerably. This has had a strong effect on the learning process, particularly in higher education. Most universities incorporate LMS as a complement ...
    • Integration of an intelligent tutoring system in a course of computer network design 

      Verdú, Elena ; Regueras, Luisa M; Gal, Eran; Castro, Juan P de; Verdú, María J; Kohen-Vacs, Dan (Educational Technology Research and Development, 06/2017)
      INTUITEL is a research project aiming to offer a personalized learning environment. The INTUITEL approach includes an Intelligent Tutoring System that gives students recommendations and feedback about what the best learning ...
    • A semantic MediaWiki-based approach for the collaborative development of pedagogically meaningful learning content annotations 

      Zander, Stefan; Swertz, Christian; Verdú, Elena ; Verdú, María J; Henning, Peter A (Lecture Notes in Computer Science, 2016)
      In this work, we present an approach that allows educational resources to be collaboratively authored and annotated with well-defined pedagogical semantics using Semantic MediaWiki as collaborative knowledge engineering ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja