• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Real-Time Visual Recognition of Ramp Hand Signals for UAS Ground Operations

    Autor: 
    de Frutos Carro, Miguel Ángel
    ;
    López Hernández, Fernando Carlos
    ;
    Rainer Granados, José Javier
    Fecha: 
    2023
    Palabra clave: 
    aircraft marshalling signals; convolutional pose machines; gesture recognition; UAS; JCR; Scopus
    Revista / editorial: 
    Journal of Intelligent and Robotic Systems
    Citación: 
    de Frutos Carro, M.Á., LópezHernández, F.C. & Granados, J.J.R. Real-Time Visual Recognition of Ramp Hand Signals for UAS Ground Operations. J Intell Robot Syst 107, 44 (2023). https://doi.org/10.1007/s10846-023-01832-3
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15400
    DOI: 
    https://doi.org/10.1007/s10846-023-01832-3
    Dirección web: 
    https://link.springer.com/article/10.1007/s10846-023-01832-3
    Open Access
    Resumen:
    We describe the design and validation of a vision-based system that allows the dynamic identification of ramp signals performed by airport ground staff. This ramp signals’ recognizer increases the autonomy of unmanned vehicles and prevents errors caused by visual misinterpretations or lack of attention from the pilot of manned vehicles. This system is based on supervised machine learning techniques, developed with our own training dataset and two models. The first model is based on a pre-trained Convolutional Pose Machine followed by a classifier, for which we have evaluated two possibilities: A Random Forest and a Multi-Layer Perceptron based classifier. The second model is based on a single Convolutional Neural Network that classifies the gestures directly imported from real images. When experimentally tested, the first model proved to be more accurate and scalable than the second one. Its strength relies on a better capacity to extract information from the images and transform the domain of pixels into spatial vectors, which increases the robustness of the classification layer. The second model instead is more adequate for gestures’ identification in low visibility environments, such as during night operations, conditions in which the first model appeared to be more limited, segmenting the shape of the operator. Our results support the use of supervised learning and computer vision techniques for the correct identification and classification of ramp hand signals performed by airport marshallers.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Real‑Time_Visual_Recognition_of_Ramp_Hand_Signals_for_UAS_Ground_Operations.pdf
    Tamaño: 2.071Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13
    84
    47
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    6
    19
    7

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Automatic Surveillance of People and Objects on Railway Tracks 

      Martínez Núñez, Domingo; López Hernández, Fernando Carlos; Rainer Granados, J. Javier (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 08/2024)
      This paper describes the development and evaluation of a surveillance system for the detection of people and objects on railroad tracks in real time. Firstly, the paper evaluates several background subtraction techniques ...
    • Engineering Education through eLearning technology in Spain 

      Fernández Rodríguez, Juan Carlos; Rainer Granados, José Javier; Miralles Muñoz, Fernando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2013)
      eLearning kind of education is stirring up all the disciplines in the academic circles, especially since it provides an access to educational areas that are uneasy and traditionally in-person, such as Engineering. Even ...
    • A Nondisturbing Service to Automatically Customize Notification Sending Using Implicit-Feedback 

      López Hernández, Fernando ; Verdú, Elena ; Rainer, J Javier ; González-Crespo, Rubén (Scientific Programming, 2019)
      This paper addresses the problem of automatically customizing the sending of notifications in a nondisturbing way, that is, by using only implicit-feedback. Then, we build a hybrid filter that combines text mining content ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja