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Abstract
We describe the design and validation of a vision-based system that allows the dynamic identification of ramp signals per-
formed by airport ground staff. This ramp signals’ recognizer increases the autonomy of unmanned vehicles and prevents 
errors caused by visual misinterpretations or lack of attention from the pilot of manned vehicles. This system is based on 
supervised machine learning techniques, developed with our own training dataset and two models. The first model is based on 
a pre-trained Convolutional Pose Machine followed by a classifier, for which we have evaluated two possibilities: A Random 
Forest and a Multi-Layer Perceptron based classifier. The second model is based on a single Convolutional Neural Network 
that classifies the gestures directly imported from real images. When experimentally tested, the first model proved to be more 
accurate and scalable than the second one. Its strength relies on a better capacity to extract information from the images and 
transform the domain of pixels into spatial vectors, which increases the robustness of the classification layer. The second 
model instead is more adequate for gestures’ identification in low visibility environments, such as during night operations, 
conditions in which the first model appeared to be more limited, segmenting the shape of the operator. Our results support 
the use of supervised learning and computer vision techniques for the correct identification and classification of ramp hand 
signals performed by airport marshallers.

Keywords Gesture Recognition · Convolutional Pose Machines · Aircraft Marshalling Signals · UAS

MSC 68T45

1 Introduction

Unmanned Aerial Systems (UAS) are a reality nowadays. 
The next big technological and operational challenge is the 
coexistence of UAS with manned aircraft. Airports and 
aerodromes provide a series of visual aids (light signals, 
colours, gestures, etc.) to help human pilots to safely posi-
tion themselves and transit in the environment. These aids, 
described in international handbooks [1], were originally 
designed for human interaction, but must now coexist with 
UAS in these spaces.

According to Tomaszewska et al. [2] more than 26% of 
reported air traffic accidents occur on the ground, with an 
estimated cost of 11 M$ per year. Furthermore, the number 
of ground accidents increased by 200% between 2012 and 
2017, mostly due to pure human errors during manoeuvres’ 
execution or in combination with other factors, such as high 

Categories (6), (7).

 * Miguel Ángel de Frutos Carro 
 mad.frutos@alumnos.upm.es

1 Centro de Automática y Robótica, Universidad Politécnica 
de Madrid-Consejo Superior de Investigaciones Científicas, 
28006 Madrid, Spain

2 Department of Mathematical Analysis and Applied 
Mathematics, Universidad Complutense de Madrid (UCM), 
28040 Madrid, Spain

3 Universidad Internacional de La Rioja (UNIR), 
26006 Logroño, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-01832-3&domain=pdf


 Journal of Intelligent & Robotic Systems (2023) 107:44

1 3

44 Page 2 of 17

workload, insufficient awareness of the situation or adverse 
weather [2]. Therefore, the presence of unmanned platforms 
in airports with autonomous navigation and their coexist-
ence with current users, may decrease traffic accidents. Their 
implementation however is a fundamental problem in the 
sector. In this study, we attempted to solve this challenge 
by integrating visual recognition and interpretation of the 
main ramp hand signals -also known as aircraft marshalling 
signs-, performed by ground personnel (aircraft marshallers 
or ramp agents) equipped with visual identification aids, 
such as marshalling wands. The solution we reached rep-
resents a complete functional system that can be integrated 
in both unmanned aerial platforms and manned commercial 
aviation.

We evaluated and compared several strategies and models 
that allow the automatic and sufficiently successful iden-
tification and classification of ramp marshalling signals 
(Fig. 1). The device is intended for professional medium-
sized UAS according to the classification table of the U.S. 
Army Roadmap for Group 2 category [3]. This category 
applies to systems that are too heavy to be operated by a 
single person but smaller than a light aircraft. They usually 
have a wingspan of about 5-10 m, landing gear, and can 
carry 100-200 kg payloads. Due to its size, they have restric-
tions for large or heavy equipment or requiring a lot of elec-
trical power. We considered that, for being truly applicable, 
any proposed solution had to take advantage of the systems 
and signalling already present in the current airport environ-
ments, avoiding the adoption of new rules or technologies. It 
should also adapt to environmental situations (daylight, field 
of vision, etc.) comparable to those in which the human eye 
can recognize the gesture.

In this study we identified the most appropriate configu-
ration for the system and elaborated two models based on 
visual processing and machine learning techniques, paying 
special attention to pre-trained neural networks. We com-
pared the two models, identifying their specific advantages 
and limitations. To date, there is no properly labelled dataset 

for training and validation, and thus we developed our own 
dataset, which includes information taken from several 
individuals with different complexions. These individu-
als repeated each gesture several times in different lighting 
scenarios, including outdoors with real-life settings such as 
airfields with moving aircraft in the background.

Our solution has three potential applications:

1. Unmanned Aerial Vehicles: these vehicles need to oper-
ate in the same spaces of manned traffic and therefore 
they must be adapted to the current visual signage 
designed for humans. Providing UAS with a ramp sig-
nal recognizer would facilitate their introduction in 
existing airports and aerodromes without the need of 
large investment. As of today, only a small proportion 
of the larger unmanned vehicles (those with more than 
1000 kg) have limited guidance assistance systems in 
airport environments based on heavy complex systems. 
However, the vast majority of professional UASs fall 
into the medium-size category [3], which is likely going 
to expand in the future. These UAVs currently lack “on-
ground aid systems” and have restrictions to incorporate 
new equipment that penalizes their endurance and pay-
load capacity.

2. Manned aerial vehicles: automatic visual recognition 
would provide the pilots with additional information, 
improving their situational awareness, alleviating their 
workload and even alerting of potential risky actions.

3. Ground service vehicles: there are many vehicles that 
operate on the airport apron providing ground assis-
tance, including aircraft movement (tow tractors), pas-
senger shuttling and baggage hauling. These vehicles 
operate daily on taxiways and are often involved in inci-
dents that the proposed system would help to avoid.

The remaining of this manuscript is structured as fol-
lows: Sect. 2 reviews the state-of-the-art and currently 
available technology to address the problem of ramp hand 

Fig. 1  Schematic representation of the five signal categories that the system needs to identify together with their corresponding label
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signal recognition. Section 3 describes our research strat-
egy and presents the adopted materials and methods. The 
experimental analysis and evaluation of our classification 
architectures are described in Sect. 4, for the offline evalu-
ation, and Sect. 5 for the online one. Section 6 presents 
a benchmarking against a standard CNN. Finally, Sect. 7 
highlights the most important findings and describes future 
perspectives.

2  Background and Related Work

2.1  Aircraft Marshalling

Aircraft Marshaller is the official designation for the member 
of the ground personnel who helps the pilots to execute cer-
tain manoeuvres whenever there is a risk of incidents. These 
airport signals complement those the air traffic controller 
provides the pilot. A similar role exists in the defence sector 
under the name of flight deck personnel or Shooters when 
they perform their duties on aircraft carriers. These opera-
tors are equipped with a high visibility vest, ear protection 
helmets and two manoeuvring wands or flashlights. Their 
main functions are:

• Guiding of the aircraft in taxiing manoeuvres.
• Authorizing airplanes to perform certain manoeuvres.
• Coordinating the actions of all involved personnel.
• Managing and executing of emergency plans.
• Supervising regulation compliance and notifying any 

potential transgression.

Ramp signals refer to the combination of gestures that 
ground personnel perform with specific movements of their 
arms and hands. These gestures encode different messages 
directed to the human pilots located in the cockpit, from 
where they generally have a limited view of the aircraft’s 
surroundings during taxiing and parking. There are different 
sets of gestures depending on their purpose. There are some 
discrepancies between the gestures used on the runway of a 
NATO aircraft carriers [4] and those used in international 
airports for civilian use [5]. Thus, the International Civil 
Aviation Organization (ICAO) dictated a series of manda-
tory recommendations for its adhering countries, in order to 
establish an international standard for all aspects of air trans-
port [1]. Nowadays, these recommendations are the most 
popular and frequently used. The principal characteristics 
of ICAO gestures are:

• Only the arms are used.
• Although the gestures are dynamic, the spatial informa-

tion prevails over the temporal one.

• Both arms encode information.
• Gestures are visually independent.

2.2  Human–Robot Interaction

Human–Robot Interaction (HRI) is a multidisciplinary 
field that addresses effective and efficient communication 
mechanisms between humans and machines, enabling their 
collaboration in the execution of a given task. Understand-
ing human interaction and implementing human communi-
cation abilities into machines is thus a fundamental aspect 
of HRI [6]. During human communication, the transmis-
sion of intentions, interests and feelings are also important. 
Therefore, it is necessary to develop an intelligent agent 
capable of understanding these nuances and to establish a 
solid human–robot communication. To this end, HRI uses 
several channels of communication, involving different sci-
entific fields, such as natural language processing, computer 
vision, gesture recognition, etc.

This research uses HCI to solve the communication 
between ramp operators and the autonomous vehicles with-
out using remote controls. These interactions are explicit 
communication, given that messages are predetermined, 
univocally identifiable and there is no space for subjective 
appreciations. Thus, the communication factors [7] pre-
sented in this model are:

• Emitter: Aircraft marshaller.
• Receptor: Unmanned or manned aircraft.
• Code: ICAO Ramp signals.
• Direction: Unidirectional from the emitter to the receptor.
• Channel: Visually encoded.
• Context-Free: Independence from the understanding of 

the previous gesture.
• With noise: Occasional interferences such as lack of 

luminosity or visibility.
• Redundant: The gesture is maintained for as long as it is 

valid.

2.3  Gesture Recognition

Gesture recognition has been intensely studied during the 
last two decades, thanks to the increasing amount of infor-
mation that humans encode in gestures as a complement 
to verbal communication complement or even as its substi-
tute in case of channel or agent limitations [8]. The current 
applications of gesture recognition techniques are many and 
varied, from interaction with autonomous systems, home 
automation, video games or socio-sanitary robots. It can 
be limited to specific body parts or comprising the whole 
body, with obvious differences in the expected precision and 
detail level. For example, a system that attempts to classify 
body gestures [9] will not analyse the position of the fingers, 
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whereas in a system designed for driving of autonomous cars 
[10], the position of the hands and fingers prevails over the 
corporal information, as the driver is seated.

Gestures can also be classified according to spatial/
temporal information they provide. Spatial gestures 
are easy recognizable, as they do not have a temporal 
dimension, which usually requires a sequence of related 
data. The influence of speed and position in the dynamic 
recognition of gestures is reviewed in [6]. Numerous 
techniques have been developed to recognise and clas-
sify gesture´s sequences, including the Hidden Markov 
Model (HMM) [11], the Longest Common Subsequence 
Problem (LCS) [12] or the Viterbi algorithm [13]. All 
of them are suited to identify dynamic gestures of the 
whole body [14] or only of the hands [15]. However, 
the techniques based on Dynamic Time Warping (DTW) 
outstand because they allow to compare two sequences 
with different time scales and determine their degree of 
similarity. New techniques based on the use of artificial 
neural networks have also emerged especially those used 
for video classification, which treat the problem sequen-
tially, and not as an isolated classification of frames. 
For instance, Donahue et al. [16] proposes to extract the 
characteristics of each video frame with a Convolutional 
Neural Network (CNN) and then move the sequence to a 
second independent Recurring Neural Network (RNN). 
A similar solution is found in [17], in which the fea-
tures extracted by the convolutional network are moved 
to a Multi-Layer Perceptron (MLP). This is based on 
the hypothesis that a MLP will naturally infer the tem-
poral characteristics of the sequence without knowing 
that it is a sequence. Furthermore, the work based on 
three-dimensional convolutional networks (3D-CNN) can 
extract graphic characteristics directly from a set of tem-
porally related frames, identifying a low-level represen-
tation with 3D convolutional operations. This approach 
has yielded excellent results [10] but has some important 
disadvantages [18] as compared to architectures based 
on 2D networks. Indeed, 3D-CNNs demand much more 
computational resources and memory, which limits their 
use for real-time applications or embedded platforms. 
On the other hand, there are few available pre-trained 
3D-CNN networks for extracting features in videos, but 
there are numerous and very powerful networks trained 
using 2D-CNN architectures.

These techniques can also be classified into collabo-
rative and non-collaborative. Techniques in which the 
user performing the gesture relies on the use of addi-
tional hardware are classified as collaborative or inva-
sive. Examples are those based on gloves [19] or vests 
that help capture the motion through different sensors 
(inertial, position encoders, etc.). Other techniques, more 
relevant for this study, are based on computer vision 

without the aid of hardware (non-collaborative), such as 
those described in the seminal work of Paul Viola and 
Michael Jones [20] or Dalal and Trigs [21]. These tech-
niques are frequently used because they are widely acces-
sible and not very computationally demanding, though 
they do present some disadvantages, such as the number 
of false positives or the lack of detections of different 
human poses if they are not perpendicular to the camera. 
More recently, AlexNet showed the potential of Convo-
lutional Neural Networks (CNN) for image classification 
[22]. Since then, numerous applications have used this 
approach. The Convolutional Pose Machines (CPM) are 
of particular interest for the gestures and postures rec-
ognition [23]. CPM are a set of pre-trained and deeply 
convolutional networks that identify the main joints of 
the body, hands, feet and even facial features through a 
series of coordinates or singular points reproducing an 
artificial skeleton. The recognition of traditional traf-
fic police gestures has been successfully tested using a 
novel method of vision-based pose estimation [24][24]. 
Both works combine the CPM with a Long Short-Term 
Memory (LSTM) network, given that the gestures of 
the Chinese police are not context-free and require the 
integration of temporal features to achieve a successful 
recognition.

The problem of gesture recognition comprises the seg-
mentation and the recognition of singular points [26]. The 
architecture can be implemented in a top-down or bottom-
up manner. In the top-down, the segmentation identifies 
all individuals present in the image and then extracts the 
poses [27]. The bottom-up approach identifies the singular 
points and then groups them to form skeletons, produc-
ing the actual segmentation [28]. The model developed by 
the Computational Perception Laboratory of the Carnegie 
Mellon University is particularly interesting. The authors 
designed and trained an architecture based on several deep 
networks divided in two steps [29]. The first step, com-
posed of 10 layers, identifies a map of the image character-
istics. The second and more complex step consists of two 
CNNs in parallel, in which the first branch predicts a set of 
confidence maps based on the probability that the identified 
zone corresponds to one of the points of interest. The sec-
ond convolutional branch instead infers a confidence map 
that encodes the degree of affinity between these individual 
points, forming the vectors that will make up the skeleton. 
The results obtained by the two networks are crossed using 
a greedy algorithm, finally identifying all singular points 
and vectors that will make up the skeleton (Fig. 2). Usually, 
a vector with at least three components represents every 
individual point on this skeleton: the first two correspond 
to the spatial coordinates (x and y) in a given reference 
frame, and the third measures the confidence of the body 
area identified by that point.
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The models presented so far are bi-dimensional 
but there are models that expand the information to 
a third dimension. These models require the use of a 
camera equipped with depth sensors (as the Microsoft-
Kinect®) for the simultaneous acquisition of visual 
and depth information or a mathematical model to 
infer a 3D representation from a 2D image [14]. One 
of such models is the Human Mesh Recovery (HMR) 
[30], based on the training of antagonistic networks 
with 2D images labelled for spatial information. The 
authors of the “Skepxels” concept (skeleton picture 
element) have followed this approach, adding time 
and speed information to the usual spatial coordi-
nates, thereby obtaining a temporal representation of 
the skeleton [31].

When using a deep network-based architecture, the result-
ing model largely depends on the training dataset used. 
Numerous high-quality datasets have recently emerged, 
among which the Common Objects in Context – COCO is 
of particular interest [32].

There are few references related to the recognition of 
ramp signals. In two previous studies [12] [33], the strategy 
used to tackle the problem was based on images captured 
with an RGB camera, which were then used for classifying 
the gestures with either the Longest Common Subsequence 
Method [12] or the Radon Transform [33]. A third study 
addresses the recognition of signals used by NATO aircraft 
carriers [4] with depth sensors and the application of the 
Motion History Images (MHI) algorithm to classify both 
hands and whole-body gestures.

The results presented in this report go beyond these pre-
vious studies, providing a scalable system that has a direct 
industrial application.

3  Materials and methods

3.1  Research Framework

To generate a solution that could be applicable to the envi-
ronment of medium-sized UAS, we have identified the fol-
lowing requirements:

a. Work automatically to detect and classify 5 ramp signals 
(Fig. 1) recognized by the civil authorities [5]: normal 
stop, straight ahead, turn right, turn left and, unknown 
or no-gesture when none of the previous is detected.

b. Let immediate interaction by recognizing gestures with 
a latency below 3 s [34].

c. Use signalling and systems already available in airport 
environments.

d. Work properly in different ambient condition (daylight, 
field of vision, etc.) in which the human eye recognise 
the gesture.

e. Work correctly in all positions with respect to the UAS in 
which a human observer is able to identify the gesture.

f. Have a size and weight that allows its installation in a 
professional medium-sized UAS [3] with landing gear 
and capable of taxiing through an aerodrome.

3.2  Approach for Ramp Hand Signals recognition

Our approach uses exclusively visual processing to rec-
ognize the upper body gestures, without relying on other 
sensors (e.g., rangefinders, depth sensors, etc.) or tech-
nologies (e.g., fingers or facial expressions). Our solu-
tion consists of an RGB camera and a small embedded 

Fig. 2  CPM output in the 
COCO format
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processing unit with limited computational power, which 
is easy to integrate in different platforms. The software 
for the dynamic identification and classification of the 
ramp signals runs iteratively. In the following sections, 
we describe the evaluation of a combination of different 
supervised machine learning techniques that seemed to be 
the most appropriate for our goal.

3.3  Proposed Architecture

We used a CPM (a very deep 2D CNN pre-trained and opti-
mized with large general datasets) for the identification and 
extraction of the marshaller extremities followed by gesture 
classification (i.e., supervised-classification, Fig. 3). The 
output of the CPM is a set of coordinates identifying the 
different human joints [29]. This transforms a set of pixels 
into spatial vectors, which simplifies subsequent calculations 
and classification. These numerical values, duly normalized 
and processed, are the input for the next step: gesture clas-
sification. We evaluated two different supervised classifiers 
for this step.

The architecture is based on six clearly differentiated iter-
ative functions with separate objectives. The inputs/outputs 
are linked as shown in the flow chart depicted in Fig. 4 and 
are described below:

1. Capturing and pre-processing the image: We use an on-
board RGB camera to capture the image. These cameras 
have sufficient image quality and capture speed to pro-
vide an acceptable spatial and temporal resolution. This 
step encompasses video capture tasks and initial image 
pre-processing.

2. Segmentation and pose extraction: The CPM used for 
posture segmentation and extraction is based on the 
ResNet-18 model, an effective 18-layer deep neural 
network that follows a Residual [35] type architecture 
pre-trained on the MS-COCO dataset [32]. This rep-
resents a compromise between complexity and spatial 
resolution. Its environment’s independence has several 
advantages like the reduction of the training dataset for 
ramp hand signal classification and enhanced robust-
ness. The selected output is a skeleton composed of 18 
points. Each point is composed of 2 Cartesian coordi-
nates, x and y, indicating the position of the joints rela-
tive to the origin of the coordinates.

3. Normalization: To ensure the independence of the coor-
dinates from the position of the subject in respect to the 
camera, the image coordinates are transformed using 
one of the points within the skeleton as the reference of 
origin.

4. Differentiation and reduction of dimensionality: only the 
points corresponding to the arms and trunk are relevant, 
whereas the rest of the information can be discarded.

5. Gesture classification. We tested two supervised learn-
ing approaches for selecting the classification method: 
Random Forest (RF) and a densely connected MLP. 
Both approaches have been proven to efficiently recog-
nize other kinds of human gestures with limited training 
data [6]. The choice of hyperparameters and the discus-
sion of the results obtained are analysed in the next sec-
tion.

6. Filtering and representation: This step executes the 
weighting logic and low-pass filters to maintain a con-
tinuous output between the different categories and min-

Fig. 3  Functional high-level 
diagram of the proposed device
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imize the effects of flickering by classifying different 
categories of consecutive frames.

Of note, the reduced size of the available training data 
does not map this problem to a pure image classification 
problem. However, this alternative has been tested in the 
second architecture proposed, and explained in Sect. 6.

We have discarded the use of 3D-CNN, which can extract 
graphic characteristics directly from a set of frames with 
a temporal relationship. This is because of its high com-
putational demand for real-time applications [18], although 
it has given excellent results in other gesture recognition 
applications [10].

For the classification layer, we have considered only mod-
els based on supervised training. Models based on unsu-
pervised clusters, such as K-means, have been widely used 
[14] because new gestures can be added easily. However, our 
proposed scenario is limited to the five most representative 
gestures out of the 20 international gestures and does not 
contemplate new additions or variations. This justifies our 
selection of a supervised model, with a better classification 
performance and less uncertainty, assuming that the dataset 
is unbiased, sufficiently large and without outliers.

The inherent advantages of using a previously trained 
model for first pose estimation does not overcome the need 
of a ramp hand signal dataset at the classification stage. 
Indeed, there are no such public datasets. We thus initi-
ated the generation of a manually labelled, small dataset of 

these gestures. When capturing the images, we considered 
different body sizes and lighting conditions. Section 3.7 
describes in detail the development and validation of the 
model.

3.4  Contextual conditions

We assumed the following hypotheses in the experimental 
setup:

1. The subject remains in a position facing the camera.
2. The image quality is such that the human eye can iden-

tify the executed gesture.
3. The duration of the gesture is similar to the real ones, 

avoiding rapid changing or contradictory gesticulation.
4. The gestures and poses are executed so that the arms 

overlap with the torso as in real conditions.
5. The illumination is sufficient to recognize of the mar-

shaller silhouette.
6. The marshaller has a collaborative attitude.
7. The issues related to mechanical or electrical integration 

in the aerial platform are not considered.
8. The issues related with software development strategies, 

or level of guarantees, needed in all software/hardware 
development for aviation are not addressed.

9. The selected solution should fit for a state-of-the-art 
embedded computer.

Fig. 4  Flow diagram with the main functional blocks of the proposed architecture
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3.5  Research Resources

The setup for dataset generation (capturing and labelling the 
different images) and real-time evaluation consists of 3 main 
elements (Fig. 5):

• A RGB camera with automatic focus and a 720p / 30FPS 
resolution, located on a tripod and connected via USB to 
the embedded computer.

• The Embedded Computer, a NVIDIA® Jetson Nano 
(Linux Tegra L4T) executes the software used for both 
the generation of the dataset and the demonstration in 
real-time.

• A Monitor / External PC is used as auxiliary validation 
and testing tool.

The custom software tools developed are publicly avail-
able in an online repository (see Sect. 8). They have been 
built using the following frameworks and software packages:

• TensorFlow 2.0.
• NVIDIA TensorRT®.
• Tensor RT Pose Estimation.1
• Scikit-Learn 1.1.3.

3.6  Experiment description

We have developed a software application to facilitate the 
operations through a Graphical User Interface (GUI). This was 
especially useful for dataset generation and experimentation. 
The GUI consists of a single tab with three main panels (Fig. 6):

1. The Live video panel shows the real-time RGB images 
captured by the camera with the superposed CPM output 
(the inferred skeleton) and shows the time to execute the 

Fig. 5  General description of the test setup used in the course of this 
work

Fig. 6  Outline of the developed 
GUI with the different areas 
labelled in the blue boxes

1 Open-source project that implements a pre-trained CPM: https:// 
github. com/ NVIDIA- AI- IOT/ trt_ pose

https://github.com/NVIDIA-AI-IOT/trt_pose
https://github.com/NVIDIA-AI-IOT/trt_pose
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main loop, measured in frames per second (FPS). The 
PAUSE/LIVE button stops and resumes the output of 
the camera and the CPM superposition.

2. The Dataset panel includes all the tools needed for 
capturing and labelling images for training and valida-
tion purposes (Category menu), as well as the tools for 
classifying the images into different subjects (Dataset 
menu). The Count field keeps track of captured number 
of samples per category and subject. The CAPTURE 
and SAVE buttons respectively capture the CPM output 
and save it to the array of samples.

3. The Prediction panel contains all elements related to the 
selection of the classification model (Models menu) and 
the corresponding output. The output is encoded in 6 
probability bars that indicate the probability with which 
each category is predicted (from 0 to 1). We have also 
included a “NO HUMAN” category that appears when 
the presence of a person in the image is highly unlikely. 
The most probable category is shown in the OUT field, 
and the execution of the classification can be stopped or 
resumed at any time with the RUN button.

3.7  Data Collection Procedure

The data were captured in a variety of environmental 
and lighting conditions, including controlled indoor 
environments and real-life outdoors scenarios, such 
as an airfield with manned traffic or people and other 
support vehicles moving freely around. We used the 
camera described in Sect. 3.5 to capture the footage. 
We produced a total of 7227 labelled samples, involv-
ing 2 males and 1 female. Each gesture was repeated 

Table 1  Total number of 
samples registered from each 
of the three volunteers who 
participated in the dataset 
acquisition

Category Number 
of sam-
ples

STOP 1548
AHEAD 1507
RIGHT 1419
LEFT 1381
NONE 1372
Total 7 227

Fig. 7  Sample image gallery of Ramp Hand signal dataset, manually collected and labelled
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about 1400 times, generating the distribution shown in 
Table 1.

Figure 7 shows a sample of raw images used to generate 
the datasets. Each volunteer was individually instructed 
to correctly perform the different signs based on a video 
executed by a professional. Volunteers were asked to move 
within the field of view of the camera, without following 
a predefined position of the body angle with respect to 
the camera, and complying with the assumptions defined 
in Sect. 3.4. This was performed to teach the classifier to 
dismiss useless information and focus only on the arms. 
The volunteers were also wearing the characteristic equip-
ment (reflective vest and marshalling wands) to determine 
if their reflective nature prevented the system to operate 
normally and to verify slight gesture deviations imposed 
by the equipment. The subject’s privacy was kept at all 
times by saving the mentioned coordinates and discard-
ing the real images from the public dataset available in an 
online repository (see Sect. 8).

The data curation, performed on a general-purpose 
computer, included importing and grouping all data in a 
single object per category, further detecting and deleting 
any outlier values to avoid a negative impact on the train-
ing process. The data were then exported to.csv file for 
convenience, and a list of headers to identify each coordi-
nate was added. We prepare the data for model training, by 
appending the corresponding labels to each sample, group-
ing them in a single dataset and shuffling to obtain a homo-
geneous random set. The labels were then converted into 
categories, resulting in low density and dispersed vectors. 
The samples were finally divided into two groups with 
80% of them as training data and the remaining 20% as 
validation data. The source code is available at the reposi-
tory indicated in Sect. 8.

4  Results and Offline Evaluation

A previous study evaluated more than 126 classification 
models for the recognition of dynamic gestures, conclud-
ing that the neural network and the RF classifier were the 
most accurate for gesture recognition [6]. After preliminary 
experimentation, we agree with this conclusion. We found 
that the supervised learning models RF and MLP were the 
best performing classifiers for our purpose. As already men-
tioned, both models have been trained on a general-purpose 
computer and then transferred to the embedded processing 
unit dedicated only to real-time execution. Data prepara-
tion is the same for both classifiers. The 18 two-dimensional 
vectors that make up the skeleton must be serialized from 
the labelled dataset into a single vector with 36 fields. Each 
model uses this training dataset together with the ground 

truth vector to minimize the loss function. Considering that 
our data are numerical and the datasets small, the training 
process was rapid, of the order of seconds in pairs for the RF 
and of a few minutes for the MLP.

The confusion matrix was the best metric for our analyses 
because it shows on a table the relationship between predic-
tion and ground truth and enables the easy calculation of 
other metrics. Among other available metrics, we also used:

• Accuracy or success rate that indicates the ratio between 
the final correct model prediction and the total number 
of predictions. This metric could be misleading when the 
class distribution is unbalanced, which is not the case of 
our dataset.

• F-Score. This widely used parameter boils down the per-
formance of the model to a single metric; in particular, 
combining accuracy and recall in a harmonic mean [6]. It 
also serves to assess the trade-offs adopted by the model 
during classification.

As in any supervised learning model, the correct choice 
of hyperparameters plays a fundamental role. We did not 
evaluate in details the possible different hyperparameters 
and their potential optimization, but we have taken the first 
solution that allows for the evaluation of the entire system.

4.1  Random Forest

The RF is a well-known learning method that uses multiple 
decision trees during the training time [36]. This method 
has been extensively used in a variety of applications owing 
to its prediction capacity and easiness in training and imple-
mentation. By combining several trees and choosing the 
final result as the most voted in each individual tree, this 
method achieves the greatest generalisation and prediction, 
with low noise and instability, even without using large 
datasets. In this method, each new tree is built with a ran-
dom fraction of the available samples and of the variables. 
Increasing the number of trees raises the possibility that the 
most descriptive variables appear several times in different 
trees. This characteristic is essential since the final variance 
is highly reduced, even though the model bias increases 
with respect to a single tree. On the other hand, the fact 
that each tree leaves a fraction of the samples unused (out-
of-the-bag) allows for sequential training without the need 
for cross-validation or leave-one-out technique, as they 
achieve similar effects. The most important hyperparam-
eters to choose are the number of trees and the number of 
variables. To analyse the impact of these two hyperparam-
eters, the root-mean-square error (RMSE) against the test 
dataset was used.

When evaluating the number of samples to extract to 
train each base estimator, we concluded (as Fig. 8b shows)  
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that the error decreases by increasing the number of sam-
ples in each estimator and finally decided to keep the 
default value that was set equal to the maximum number 
of independent variables. On the other hand, the error of 
the test clearly depends on the function of the maximum 
number of trees allowed. After analysing the results, we 
found that the error stabilizes when we reach 50 trees, 
that is, the error does not reduce by increasing the num-
ber of trees (Fig. 8a). Finally, we established the value of 
this parameter in 26 trees, which value corresponds to the 
minimum error achieved (Fig. 8a).

Once the combination of hyperparameters that best 
fits the characteristics of our data set were analysed, we 
trained our model. One of the advantages of this method 
is that it allows for the elaboration of graphs in a simple 
way that shows the importance of each variable (Fig. 9), 
as the aggregate result for all trees of the improvement 
obtained in the cut-off criterion for the variable.

Figure 9 shows an exponential distribution in which 
the first 5 variables account for the 75% of the decision  

information. In particular, the first 3 variables (19, 20 
and 18) correspond to the wrists’ coordinates. This 
seems logical given that these are the joints that move 
the most in each gesture and thus best contribute to their 
differentiation.

Figure 10a depicts the results of the RF model as a 
confusion matrix. The obtained values are remarkable, 
with a 97% success rate. Among the classification fail-
ures, the stop ('STOP') and the forward ('AHEAD') ges-
tures stand out. This seems logical if we consider that 
both gestures are based on the movement of both arms 
near the head.

4.2  Multi‑Layer Perceptron

This is the second artificial neuronal network (ANN) 
selected for this research. The first ANN model we used 
(i.e., the CPM) was pre-trained with the MS-COCO data-
set [32] to identify the coordinates of the body extremities. 
This model follows a completely different architecture and 

Fig. 8  RMSE against hyper-
parameters number of trees (a) 
and number of samples (b) for 
the RF method

Fig. 9  Classification of the most 
descriptive variables according 
to the improvement obtained 
in the cut-off criterion for each 
variable in each of the trees
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uses an input vector with the coordinates of the body to 
calculate the probability of each image to fall into to one of 
the 5 classes. Its topology is based on an MLP, a class of 
feed forward and densely connected neural networks. The 
information follows a sequential path from the input to the 
output layer. Unlike the first model, pretrained on a large 
dataset, this second ad hoc MLP classifier was trained with 
our smaller dataset.

We identified 3 main types of layers in the architecture of 
our ramp signal classifier:

• Input layers: each of the neurons in this layer can pro-
cess one of the dataset variables. In our case, the input 
layer contained 36 neurons, that is, 18 pairs of x, y 
coordinates, corresponding to the joints the CPM iden-
tified in the previous step.

• Output layers: the number of possible results in the 
classifier determines the number of neurons in the out-
put layer. In our case, the layer is formed by 5 neurons 
with a SoftMax activation function, which provides 
a normalized vector with the probabilities of belong-
ing to each of the mutually exclusive classes (one-hot 
encoding).

• The Hidden layers have an intermediate position in our 
network between the input to the output layers. The num-
ber of neurons in each layer is a hyperparameter of the 
model. Its choice will be discussed later.

We chose a Rectified Linear Unit (RELU) as the activa-
tion function for all the neurons in the hidden layers of 
the network, because it is computationally efficient and 
has given excellent results in different situations. We have 

chosen a categorical cross-entropy for the loss function 
given the nature of our problem and how we prepared the 
labels. We opted for an ADAM type optimizer (Adaptive 
Moment Estimation), which, based on the same principle 
as the calculation of the descent through gradients, intro-
duces the advanced concepts of moment and RMSProp, 
which translates into a more robust and faster convergence 
method.

Two important hyperparameters were considered:

1. The number of epochs that help to defining how many 
times the data of our training set need to pass through 
the network. This value is critical to prevent the model 
from overfitting.

2. The size of the training mini-batches, which defines the 
number of samples that we use in each iteration.

We used a model composed of two densely connected 
hidden layers. We have inserted regularization filters based 
on the Dropout technique between the layers of neurons. 
These filters allow 50% of the neurons to be randomly deac-
tivated only between iterations of the learning cycle, thus 
preventing the memorisation of the training data and the 
possibility of generalizations. During the training phase, we 
have calculated a value for each one of the 21,893 param-
eters (weights and biases) that compose our network.

After some training iterations, we concluded that 
there is no advantage in extending their number beyond 
300 epochs, given that this number is sufficient to reach 
a minimum and stable value of the learning curves 
(Fig. 11). Our initial results showed 96% success over 

Fig. 10  Confusion matrix, 
F-score, accuracy and derived 
metrics for the offline perfor-
mance evaluation of the RF 
model (a) and MLP model (b)
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the validation set (i.e., samples that the network had not 
seen before), with a stable curve of the validation data 
that closely follows that of the training data (Fig. 11), 
indicating that the network does not overfit. It should 
be noted that the Dropout technique was disabled at the 
time of the test, and therefore the validation loss and the 
accuracy values improved with respect to the performance 
obtained during the training phase.

We thus tested if adjusting the hyperparameters would 
improve the classification. However, comparison of our 
original model (Model-1) with two similar models in which 
the number of neurons in all layers has been either reduced 
to 32 (Model-2) or increased to 256 neurons (Model-3) 
showed no significant improvement (Fig.  12). Indeed, 
reducing the number of trainable parameters (2405 trainable 
parameters) deteriorate the performance, whereas increas-
ing them (142,341 trainable parameters) does not signifi-
cantly improve it (Fig. 12). In conclusion, in both cases, 
there were no significant increase of the computational cost 

or the execution time and the differences were small and 
attributable to the number of neurons presented in each 
network. We thus selected Model-1 as the best solution for 
our purpose.

We next compared the generated RF and MLP mod-
els by calculating the confusion matrix and other perfor-
mance indicators for the selected MLP model. As shown in 
Fig. 10b, most errors can be assigned to the misclassifica-
tion of several 'AHEAD' gestures into the 'STOP' category. 
As we indicated, these RF model errors may proceed from 
the standard position of the hands close to the head and 
above the neck.

Comparing the results of both classifiers for the offline 
evaluation (Fig. 10), we observe that both RF and MLP 
achieve similar accuracy and performance with the other 
metrics used: confusion matrix and f-score. In addition, both 
models tend to produce the similar mistakes when classify-
ing similar gestures.

Fig. 11  Accuracy and Loss 
Function metrics obtained 
during the training phase of the 
MLP-based model

Fig. 12  Comparison of the 
Accuracy and Loss Function 
metrics for the 3 set of evalu-
ated hyperparameters evaluated
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4.3  Online Performance Evaluation in a Relevant 
Environment

After training and evaluation offline, both models were 
transferred to the embedded computer to test their real-
time recognition capacity under operational conditions 
similar to those expected if installed in a UAS. To this end, 
we moved the test setup (Fig. 5) to the trafficked apron of 
the aerodrome with ICAO code LEMT, in which manned 
and unmanned aviation could soon coexist. We tested a 
single subject dressed in the characteristic equipment (see 
Sect. 3.7). The software tool described in Sect. 3.6 was used 
to analyse the performance and the success and execution 
rate (measured in FPS) of the two models. Figure 13 shows 
examples of these validations in a real environment.

The high dynamism and the lack of control of the real 
environment make it difficult to quantify the success rate 

of each classifier under equal conditions. Nevertheless, the 
predictions for the classification of both models were similar 
to those observed during the offline validations as long as the 
CPM could extract the joints’ coordinates. We should note 
that the camera (see Sect. 3.5) had problems in capturing an 
adequate image in some lighting conditions, such as direct 
lighting. This impaired the CPM task and gesture classifica-
tion. Given the small training dataset, the low dependency 
on the background is significant. This may be mainly due to 
the previous training on a large dataset of the CPM network, 
responsible for the first segmentation and extraction of the 
individual points.

The execution rate was rather consistent for both mod-
els, with image capturing and running at an average of 12 
FPS, which translates into a response time of approximately 
85 ms. Given that an aircraft movement on an aerodrome 
surface is less than 10 m/s [1], the achieved response seems 
in both cases sufficient for fluid interaction of the ground 

Fig. 13  Samples images of SW tool used for online validation during real test scenarios. FPS field, vehicles and people in the background have 
been highlighted in red

Fig. 14  Second proposed 
architecture based on a single 
Convolutional Neural Network 
(CNN) for gesture classification 
directly from the images
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guidance tasks. Of note, an intermediate optimization action 
was required to run the MLP model on the embedded GPU 
hardware efficiently, otherwise the system was, on aver-
age, three times slower than the RF model run in the same 
conditions.

On the basis of the qualitative run-time analysis, we con-
clude that both models can correctly recognize the different 
gestures. Nevertheless, in general, the MLP performed bet-
ter, with a less noisy response and prediction uncertainty.

4.4  Benchmarking the CNN

Although the proposed architecture gave excellent results, 
showing little dependency on the environment, we evaluated 
a possible alternative (Fig. 14), based on a pure image clas-
sification task, using a classical convolutional classification 
network (CCN). This architecture was pre-trained on a gen-
eral large dataset, in which the last layer was replaced with 
a classifier customized for the gesture recognition needed 
for our study.

Although we started from a network in which most of the 
parameters had already been pre-calculated, we needed to 
generate a new dataset for training the additional classifica-
tion layer. We thus generated a completely new but smaller 
dataset (450 images labelled) and used data augmentation 
techniques to artificially increase the amount of data. We 
took care that these transformations did not result in images 
inconsistent with their label or with the problem itself (i.e., 
symmetries in which the position of the arms is horizontally 
reflected or the marshaller appears upside-down).

Unlike the previous architecture in which there were two 
models in series with differentiated roles, this new archi-
tecture presents a single network, in which the matrix of 
the pixels of the captured images is the input parameter and 
the probability of belonging to each one of the categories 
is the output.

We chose a ResNet-18 network, pre-trained over the Ima-
geNet dataset (with 14 million annotated common objects 
images) [22]. The last layer was modified to fit only 5 cat-
egories according to our study. Using the application of the 
Transfer Learning technique, we could reuse all the param-
eters calculated in the previous 17 frozen layers, which are 
in charge of extracting the low-level characteristics of the 
image. Thus, this last layer is a network connecting the 512 
neurons of the ResNet-18 to each one of the proposed cat-
egories. Each neuron of this layer has a SoftMax activation 
function. We used again the ADAM optimization algorithm. 
The loss function is defined as categorical cross-entropy, 
given that this is still a classification problem of self-exclud-
ing category.

After implementing and training the new model, we 
obtained good results in the offline evaluation phase. 

However, the model overfitted and cannot generalize well 
new data, due to the small number of images used in the 
training phase. In other words, the model does not behave 
properly when the operator or the background diverge from 
the training images.

5  Conclusion and Future Work

Here, we have proposed and evaluated two vision-based 
architectures for the dynamic identification of ramp hand 
signals used by airport ground staff. The first architecture 
is based on a first segmentation phase using a pre-trained 
CPM to extract the coordinates of the operator extremities. 
This is followed by a second gesture classification step, 
based on supervised learning, to classify each executed 
gesture. In this configuration, the RF and the MLP classi-
fiers achieved similar accuracy for the offline evaluation. 
We obtained a similar performance with the other used 
metrics: confusion matrix and f-score. We also have per-
formed an online evaluation against a practical operating 
environment, an aerodrome with characteristics in which 
an UAS would operate. Both models can process a new 
image every 85 ms; however, the model based on MLP 
appeared to be more robust but requires a GPU optimiza-
tion. In fact, the MLP is 3 times slower than the RF model 
when both are executed on CPU. Thus, a non-optimized 
deep neural network-based model should be avoided if the 
hardware has insufficient computational power. The great-
est advantage of this architecture is its adaptability to the 
environment, which makes it more robust and scalable.

The second architecture is based on a pure image clas-
sification task using a CNN pre-trained on a large but gen-
eral dataset. The last neuronal layer of this CNN architec-
ture was replaced with our own classifier. Due to the small 
number of images used in the training phase, the model 
becomes overfitted and thus could not generalize new data. 
This difficulty could be overcome only by generating a 
really big dataset, of several orders of magnitude larger 
than the one we used. This new dataset should include 
operators with different complexions, clothing and, more 
importantly, diverse backgrounds. Due to the complexity 
and magnitude of that process, we opted for using the first 
CPM approach given its scalability, the use of summarized 
data, the high performance and suitability for real dynamic 
backgrounds. Nevertheless, the second architecture could 
be very useful for night operations. Indeed, we tested this 
possibility by generating a third dataset with dark images 
in which the operator uses the characteristic light wands 
to signal gestures in the dark, confirming its suitability in 
these conditions. The model based on the CPM instead 
cannot perform a proper segmentation in the dark.
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As a next step, we would like to transform the current 
prototype into a reliable industrial solution, which implies 
improving the robustness and scalability of the system 
and the possibility to combine the different architectures 
presented here. This solution could enable the system to 
operate in any type of illumination. The first layer would 
assess if there were dark pixels in the image, progressively 
giving more weight to the CNN model prediction, as the 
background gets darker. We should also add more informa-
tion or features to the coordinates calculated by the CPM. 
Indeed, adding variables that compute the speed of the ges-
ture might solve the problem of classifying similar gestures 
in the wrong category, as we have observed. These additions 
would also enable the system to identify if the manoeuvre is 
executed at a higher or lower speed, encoding more informa-
tion. This extra information could be estimated by the fre-
quency of oscillation of each arm using, for example, an FFT 
analysis on the coordinates produced by the CPM. Finally, 
we could encode this quantitative information into qualita-
tive information using some kind of fuzzy logic, instructing 
the system if the movement is slower or quicker than usual.

These are some solutions that could be developed. How-
ever, the results we present here altogether represent a proof 
of the concept that it is possible to use supervised learning 
and computer vision techniques for the correct identification 
and classification of ramp hand signals performed by airport 
marshallers.
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