Nonautonomous k -contact field theories
Autor:
Rivas, Xavier
Fecha:
2023Palabra clave:
Revista / editorial:
Journal of Mathematical PhysicsCitación:
Rivas, X. (2023). Nonautonomous k-contact field theories. Journal of Mathematical Physics, 64(3).Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://pubs.aip.org/aip/jmp/article-abstract/64/3/033507/2881697/Nonautonomous-k-contact-field-theories?redirectedFrom=fulltextResumen:
This paper provides a new geometric framework to describe non-conservative field theories with explicit dependence on the space-time coordinates by combining the k-cosymplectic and k-contact formulations. This geometric framework, the k-cocontact geometry, permits the development of Hamiltonian and Lagrangian formalisms for these field theories. We also compare this new formulation in the autonomous case with the previous k-contact formalism. To illustrate the theory, we study the nonlinear damped wave equation with external time-dependent forcing.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
16 |
59 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Time-dependent contact mechanics
de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ... -
Reduction and reconstruction of multisymplectic Lie systems
Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ... -
Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems
de León, Manuel; Lainz, Manuel; López-Gordón, Asier; Rivas, Xavier (Journal of Geometry and Physics, 2023)In this paper, we study the integrability of contact Hamiltonian systems, both time-dependent and independent. In order to do so, we construct a Hamilton–Jacobi theory for these systems following two approaches, obtaining ...