Deep and handcrafted feature supported diabetic retinopathy detection: A study
Autor:
Kadry, Seifedine
; González-Crespo, Rubén
; Herrera-Viedma, Enrique
; Krishnamoorthy, Sujatha
; Rajinikanth, Venkatesan
Fecha:
2022Palabra clave:
Revista / editorial:
Procedia Computer ScienceCitación:
Kadry, S., Crespo, R. G., Herrera-Viedma, E., Krishnamoorthy, S., & Rajinikanth, V. (2023). Deep and handcrafted feature supported diabetic retinopathy detection: A study. Procedia Computer Science, 218, 2675-2683.Tipo de Ítem:
conferenceObjectResumen:
The eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) supported eye screening is one of the ophthalmological practices. This work proposed a Deep-Learning Procedure (DLP) to recognize Diabetic Retinopathy (DR) in FI. The proposed work presents the experimental work with different DLP methods found in the literature. This work is executed with two modes; (i) DR detection using conventional deep-features and (ii) DR discovery using deep ensemble features. To demonstrate this work, 1800 fundus images (900 regular and 900 DR class) are considered for the assessment, and the advantage of proposed plan is confirmed using various performance metrics. The experimental outcome of this study confirms that the AlexNet-based detection provides a better detection (>96%), and the deep ensemble features of AlexNet, VGG16, and ResNet18 provide a detection accuracy of >98% on the chosen FRI database.
Ficheros en el ítem
Nombre: deep_and_handcrafted_feature_supported_diabetic_retinopathy_detection.pdf
Tamaño: 2.241Mb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
14 |
83 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
20 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes
Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ... -
Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study
Kadry, Seifedine; Herrera-Viedma, Enrique; González-Crespo, Rubén; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are ... -
A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm
Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...