Mostrar el registro sencillo del ítem

dc.contributor.authorKadry, Seifedine
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.contributor.authorKrishnamoorthy, Sujatha
dc.contributor.authorRajinikanth, Venkatesan
dc.date2022
dc.date.accessioned2023-09-18T06:41:06Z
dc.date.available2023-09-18T06:41:06Z
dc.identifier.citationKadry, S., Crespo, R. G., Herrera-Viedma, E., Krishnamoorthy, S., & Rajinikanth, V. (2023). Deep and handcrafted feature supported diabetic retinopathy detection: A study. Procedia Computer Science, 218, 2675-2683.es_ES
dc.identifier.issn1877-0509
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15278
dc.description.abstractThe eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) supported eye screening is one of the ophthalmological practices. This work proposed a Deep-Learning Procedure (DLP) to recognize Diabetic Retinopathy (DR) in FI. The proposed work presents the experimental work with different DLP methods found in the literature. This work is executed with two modes; (i) DR detection using conventional deep-features and (ii) DR discovery using deep ensemble features. To demonstrate this work, 1800 fundus images (900 regular and 900 DR class) are considered for the assessment, and the advantage of proposed plan is confirmed using various performance metrics. The experimental outcome of this study confirms that the AlexNet-based detection provides a better detection (>96%), and the deep ensemble features of AlexNet, VGG16, and ResNet18 provide a detection accuracy of >98% on the chosen FRI database.es_ES
dc.language.isoenges_ES
dc.publisherProcedia Computer Sciencees_ES
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1877050923002405?via%3Dihubes_ES
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectdeep-learninges_ES
dc.subjectdiabetic retinopathyes_ES
dc.subjecteye abnormalityes_ES
dc.subjectfundus imaginges_ES
dc.subjectScopus(2)es_ES
dc.titleDeep and handcrafted feature supported diabetic retinopathy detection: A studyes_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.procs.2023.01.240


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem