Mostrar el registro sencillo del ítem

dc.contributor.authorJames Fong, Simon
dc.contributor.authorLobo Marques, João Alexandre
dc.contributor.authorLi, G.
dc.contributor.authorDey, Nilanjan
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.contributor.authorBernardo Gois, F. Nauber
dc.contributor.authorXavier Neto, José
dc.date2022
dc.date.accessioned2023-09-13T16:00:12Z
dc.date.available2023-09-13T16:00:12Z
dc.identifier.citationFong, S.J. et al. (2022). The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_5es_ES
dc.identifier.isbn9783030952815
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15268
dc.description.abstractThe application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they can provide for the current pandemic management. This work proposes using the susceptible-exposed-asymptomatic but infectious-symptomatic and infectious-recovered-deceased (SEAIRD) model for different learning models. The first analysis considers an unsupervised prediction, based directly on the epidemiologic compartmental model. After that, two supervised learning models are considered integrating computational intelligence techniques and control engineering: the fuzzy-PID and the wavelet-ANN-PID models. The purpose is to compare different predictor strategies to validate a viable predictive control system for the COVID19 relevant epidemiologic time series. For each model, after setting the initial conditions for each parameter, the prediction performance is calculated based on the presented data. The use of PID controllers is justified to avoid divergence in the system when the learning process is conducted. The wavelet neural network solution is considered here because of its rapid convergence rate. The proposed solutions are dynamic and can be adjusted and corrected in real time, according to the output error. The results are presented in each subsection of the chapter.es_ES
dc.language.isoenges_ES
dc.publisherEpidemic Analytics for Decision Supports in COVID19 Crisises_ES
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-030-95281-5_5es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectANN predictores_ES
dc.subjectCOVID19es_ES
dc.subjectEpidemiologyes_ES
dc.subjectFuzzy predictores_ES
dc.subjectPID controles_ES
dc.subjectSEAIRDes_ES
dc.subjectScopus(2)es_ES
dc.titleThe Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemices_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-030-95281-5_5


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem