Mostrar el registro sencillo del ítem
Time-dependent contact mechanics
dc.contributor.author | de León, Manuel | |
dc.contributor.author | Gaset, Jordi | |
dc.contributor.author | Gràcia, Xavier | |
dc.contributor.author | Muñoz-Lecanda, Miguel C. | |
dc.contributor.author | Rivas, Xavier | |
dc.date | 2023 | |
dc.date.accessioned | 2023-04-14T10:10:29Z | |
dc.date.available | 2023-04-14T10:10:29Z | |
dc.identifier.citation | de León, M., Gaset, J., Gràcia, X. et al. Time-dependent contact mechanics. Monatsh Math (2022). https://doi.org/10.1007/s00605-022-01767-1 | es_ES |
dc.identifier.issn | 0026-9255 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/14531 | |
dc.description.abstract | Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Monatshefte fur Mathematik | es_ES |
dc.relation.uri | https://link.springer.com/article/10.1007/s00605-022-01767-1 | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | contact structure | es_ES |
dc.subject | dissipation | es_ES |
dc.subject | Hamiltonian system | es_ES |
dc.subject | Holonomic constraints | es_ES |
dc.subject | Jacobi structure | es_ES |
dc.subject | singular Lagrangian | es_ES |
dc.subject | time-dependent system | es_ES |
dc.subject | Scopus | es_ES |
dc.subject | JCR | es_ES |
dc.title | Time-dependent contact mechanics | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1007/s00605-022-01767-1 |