Mostrar el registro sencillo del ítem

dc.contributor.authorde León, Manuel
dc.contributor.authorGaset, Jordi
dc.contributor.authorGràcia, Xavier
dc.contributor.authorMuñoz-Lecanda, Miguel C.
dc.contributor.authorRivas, Xavier
dc.date2023
dc.date.accessioned2023-04-14T10:10:29Z
dc.date.available2023-04-14T10:10:29Z
dc.identifier.citationde León, M., Gaset, J., Gràcia, X. et al. Time-dependent contact mechanics. Monatsh Math (2022). https://doi.org/10.1007/s00605-022-01767-1es_ES
dc.identifier.issn0026-9255
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14531
dc.description.abstractContact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.es_ES
dc.language.isoenges_ES
dc.publisherMonatshefte fur Mathematikes_ES
dc.relation.urihttps://link.springer.com/article/10.1007/s00605-022-01767-1es_ES
dc.rightsopenAccesses_ES
dc.subjectcontact structurees_ES
dc.subjectdissipationes_ES
dc.subjectHamiltonian systemes_ES
dc.subjectHolonomic constraintses_ES
dc.subjectJacobi structurees_ES
dc.subjectsingular Lagrangianes_ES
dc.subjecttime-dependent systemes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleTime-dependent contact mechanicses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s00605-022-01767-1


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem