• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Underwater IoT Network by Blind MIMO OFDM Transceiver Based on Probabilistic Stone's Blind Source Separation

    Autor: 
    Khosravy, Mahdi
    ;
    Gupta, Neeraj
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    Fecha: 
    2022
    Palabra clave: 
    underwater IoT; smart ocean; MIMO network; blind source separation; channel estimation; sparse channel; JCR; Scopus
    Revista / editorial: 
    Support UsContactAdmin ACM Transactions on Sensor Networks
    Citación: 
    Khosravy, M., Gupta, N., Dey, N., & Crespo, R. G. (2022). Underwater IoT network by blind MIMO OFDM transceiver based on probabilistic Stone’s blind source separation. ACM Transactions on Sensor Networks (TOSN), 18(3), 1-27.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14448
    DOI: 
    https://doi.org/10.1145/3462674
    Dirección web: 
    https://dl.acm.org/doi/10.1145/3462674
    Resumen:
    Telecommunications systems with Multi-Input Multi-Output (MIMO) structure using Orthogonal Frequency Division Modulation (OFDM) have great potential for efficient application to a network of Internet of Things (IoT) at a high data rate. When the IoT network is among the underwater sensory devices known as the Internet of Underwater Things (IoUT), the electromagnetic wave cannot play the role of baseband signal due to rapid fall-off inside the water. Thus, acoustic OFDM is a reliable replacement for conventional OFDM inside the water. A blind structure for MIMO acoustic OFDM using Independent Component Analysis (ICA) brings even further advantages in data rate and energy consumption by avoiding the required pilot and preamble data. This research work presents a blind MIMO Acoustic OFDM blind transceiver for IoUT based on Probabilistic Stone's Blind Source Separation (PS-BSS). The proposed technique has multiple times lower complexity compared to the ICA-based technique while maintaining a comparable efficiency. As observed in the results carried out with 100 Monte Carlo runs of transmission of random data bits over a highly sparse channel that is the common case of an underwater environment, the proposed PS-BSS-based technique dominates the ICA-based one, and as the sparseness of the channel decreases, its efficiency is comparable to the ICA-based technique. Thus, in the case of a highly sparse channel, the proposed technique is superior in both aspects of efficiency and complexity, while over lower sparseness, due to its comparative efficiency, it can be hired as an optimum technique fulfilling a fair tradeoff between efficiency and complexity.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    25
    79
    39
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines 

      Gupta, Neeraj; Khosravy, Mahdi; Patel, Nilesh; Dey, Nilanjan; Gupta, Saurabh; Darbari, Hemant; González-Crespo, Rubén (Applied Sciences, 07/2020)
      In the era of Internet of things (IoT), network Connection of an enormous number of agriculture machines and service centers is an expectation. However, it will be with a generation of massive volume of data, thus overwhelming ...
    • Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm 

      Gupta, Neeraj; Khosravy, Mahdi; Gupta, Saurabh; Dey, Nilanjan; González-Crespo, Rubén (Springer, 02/2022)
      This paper focuses on developing a computationally economic lightweight artificial intelligence (AI) technology for smartphones. Until date, no commercial system is available on this technology. Thus the developed breakthrough ...
    • Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles 

      Gupta, Neeraj; Gupta, Saurabh; Khosravy, Mahdi; Dey, Nilanjan; Joshi, Nisheeth; González-Crespo, Rubén; Patel, Nilesh (Journal of intelligent manufacturing, 2022)
      Today’s Agriculture vehicles (AgV)s are expected to encompass mainly the three requirements of customers; economy, the use of High technology and reliability. In this manuscript, we investigate the technology solution for ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja