• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines

    Autor: 
    Gupta, Neeraj
    ;
    Khosravy, Mahdi
    ;
    Patel, Nilesh
    ;
    Dey, Nilanjan
    ;
    Gupta, Saurabh
    ;
    Darbari, Hemant
    ;
    González-Crespo, Rubén
    Fecha: 
    07/2020
    Palabra clave: 
    Green IoT; agricultural machine; artificial neural network; evolutionary algorithm; edge computation; health-monitoring; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11004
    DOI: 
    https://doi.org/10.1007/s10489-020-01744-x
    Dirección web: 
    https://link.springer.com/article/10.1007/s10489-020-01744-x#citeas
    Resumen:
    In the era of Internet of things (IoT), network Connection of an enormous number of agriculture machines and service centers is an expectation. However, it will be with a generation of massive volume of data, thus overwhelming the network traffic and storage system especially when manufacturers give maintenance service typically by various data analytic applications on the cloud. The situation is more complex in the context of low latency applications such as health monitoring of agriculture machines, although require emergency responses. Performing the computational intelligence on edge devices is one of the best approaches in developing green communications and managing the blast of network traffic. Due to the increasing usage of smartphone applications, the edge computation on the smartphone can highly assist the network traffic management. In connection with the mentioned point, in the context of exploiting the limited computation power of smartphones, the design of an AI-based data analytic technique is a challenging task. On the other hand, the users' need for economic technology makes it not to be easily pierced. This research work aims both targets by presenting a bi-level genetic algorithm approach of an optimized data analytic AI technique for monitoring the health of the agriculture vehicles which can be economically utilized on smartphone end-devices using the built-in microphones instead of expensive IoT sensors.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    58
    45
    28
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles 

      Gupta, Neeraj; Gupta, Saurabh; Khosravy, Mahdi; Dey, Nilanjan; Joshi, Nisheeth; González-Crespo, Rubén ; Patel, Nilesh (Journal of intelligent manufacturing, 2021)
      Today’s Agriculture vehicles (AgV)s are expected to encompass mainly the three requirements of customers; economy, the use of High technology and reliability. In this manuscript, we investigate the technology solution for ...
    • Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm 

      Gupta, Neeraj; Khosravy, Mahdi; Gupta, Saurabh; Dey, Nilanjan; González-Crespo, Rubén (Springer, 02/2022)
      This paper focuses on developing a computationally economic lightweight artificial intelligence (AI) technology for smartphones. Until date, no commercial system is available on this technology. Thus the developed breakthrough ...
    • Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN 

      Gupta, Neeraj; Khosravy, Mahdi; Patel, Nilesh; Dey, Nilanjan; González-Crespo, Rubén (IEEE Computer Society, 2021)
      Smart monitoring of off-road vehicles is cursed by their complex and expensive IoT sensors technologies. High dependence on the cloud/fog computation, availability of the network, and expert knowledge make it handicap in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja