• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm

    Autor: 
    Gupta, Neeraj
    ;
    Khosravy, Mahdi
    ;
    Gupta, Saurabh
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    Fecha: 
    02/2022
    Palabra clave: 
    agriculture vehicles; artificial neural network; genetic algorithm; parallel computation; Scopus; JCR
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12445
    DOI: 
    https://doi.org/10.1007/s10766-020-00671-1
    Dirección web: 
    https://link.springer.com/article/10.1007/s10766-020-00671-1
    Resumen:
    This paper focuses on developing a computationally economic lightweight artificial intelligence (AI) technology for smartphones. Until date, no commercial system is available on this technology. Thus the developed breakthrough technology can enhance the capability of users on the field for monitoring the agricultural vehicles (AgV)s health by analyzing the acoustic noise using smartphone‘s app. This paper can enable the user of AgVs to optimize their farming by management at edge devices: smartphones. Since smartphones use a small integrated computing unit with computational limited resources, thus lighter the system, more favorable to work on. Artificial neural network (ANN) is one of the most favorite AI techniques, but its lightweight architecture—attributed by the number of inputs and hidden layers and neurons—, is one of the most important issues in the context of smartphones. Under the framework of bi-level optimization, we aim to analyze the tournament selection operator based genetic algorithm with hybrid crossover operators, at level-I, to evolve ANN, at level-II to design the lightweight edge device enabled AI technique. The obtained results and numerical evaluative analysis indicate that the optimized design of the lightweight fault detection system responds well to the soundtracks received via microphones. We present the evaluation of the proposed technology on serial programming, parallel programming (PP), GPU programming, and GPU with PP. The results show that PP is enough efficient for the proposed technology and can save the cost of GPU for large scale implementation of the technology. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    49
    13
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines 

      Gupta, Neeraj; Khosravy, Mahdi; Patel, Nilesh; Dey, Nilanjan; Gupta, Saurabh; Darbari, Hemant; González-Crespo, Rubén (Applied Sciences, 07/2020)
      In the era of Internet of things (IoT), network Connection of an enormous number of agriculture machines and service centers is an expectation. However, it will be with a generation of massive volume of data, thus overwhelming ...
    • Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles 

      Gupta, Neeraj; Gupta, Saurabh; Khosravy, Mahdi; Dey, Nilanjan; Joshi, Nisheeth; González-Crespo, Rubén ; Patel, Nilesh (Journal of intelligent manufacturing, 2021)
      Today’s Agriculture vehicles (AgV)s are expected to encompass mainly the three requirements of customers; economy, the use of High technology and reliability. In this manuscript, we investigate the technology solution for ...
    • Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN 

      Gupta, Neeraj; Khosravy, Mahdi; Patel, Nilesh; Dey, Nilanjan; González-Crespo, Rubén (IEEE Computer Society, 2021)
      Smart monitoring of off-road vehicles is cursed by their complex and expensive IoT sensors technologies. High dependence on the cloud/fog computation, availability of the network, and expert knowledge make it handicap in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja