• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A survey on machine learning for recurring concept drifting data streams

    Autor: 
    Suárez-Cetrulo, Andrés L.
    ;
    Quintana, David
    ;
    Cervantes, Alejandro
    Fecha: 
    2023
    Palabra clave: 
    concept drift; data streams; meta learning; online machine learning; regime change; Scopus; JCR
    Revista / editorial: 
    Expert Systems with Applications
    Citación: 
    Suárez-Cetrulo, A. L., Quintana, D., & Cervantes, A. (2022). A survey on machine learning for recurring concept drifting data streams. Expert Systems with Applications, 118934.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14409
    DOI: 
    https://doi.org/10.1016/j.eswa.2022.118934
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0957417422019522?via%3Dihub
    Open Access
    Resumen:
    The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: a_survey_on_machine_learning.pdf
    Tamaño: 1.147Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    59
    121
    150
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    245
    114
    186

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review 

      Suárez-Cetrulo, Andrés L.; Quintana, David; Cervantes, Alejandro (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2023)
      Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine ...
    • Longitudinal Segmented Analysis of Internet Usage and Well-Being Among Older Adults 

      Cervantes, Alejandro; Quintana, David; Saez, Yago; Isasi, Pedro (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2024)
      The connection between digital literacy and the three core dimensions of psychological well-being is not yet well understood, and the evidence is controversial. We analyzed a sample of 2,314 individuals, aged 50 years and ...
    • Improving Children's Experience on a Mobile EdTech Platform through a Recommender System 

      Ruiz-Iniesta, Almudena ; Melgar, Luis; Baldominos, Alejandro; Quintana, David (Mobile Information Systems, 2018)
      Smile and Learn is an EdTech digital publisher that offers a smart library of close to 100 educational stories and gaming apps for mobile devices aimed at children aged 2 to 10 and their families. Given the complexity of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja