• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Autor: 
    Suárez-Cetrulo, Andrés L.
    ;
    Quintana, David
    ;
    Cervantes, Alejandro
    Fecha: 
    06/2023
    Palabra clave: 
    concept drift; finance; machine learning; metamodel; regime change; systematic review; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15032
    DOI: 
    https://doi.org/10.9781/ijimai.2023.06.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3331
    Open Access
    Resumen:
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_06_003.pdf
    Tamaño: 973.7Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    133
    315
    213
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    283
    901
    813

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A survey on machine learning for recurring concept drifting data streams 

      Suárez-Cetrulo, Andrés L.; Quintana, David; Cervantes, Alejandro (Expert Systems with Applications, 2023)
      The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. ...
    • Longitudinal Segmented Analysis of Internet Usage and Well-Being Among Older Adults 

      Cervantes, Alejandro; Quintana, David; Saez, Yago; Isasi, Pedro (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2024)
      The connection between digital literacy and the three core dimensions of psychological well-being is not yet well understood, and the evidence is controversial. We analyzed a sample of 2,314 individuals, aged 50 years and ...
    • Improving Children's Experience on a Mobile EdTech Platform through a Recommender System 

      Ruiz-Iniesta, Almudena ; Melgar, Luis; Baldominos, Alejandro; Quintana, David (Mobile Information Systems, 2018)
      Smile and Learn is an EdTech digital publisher that offers a smart library of close to 100 educational stories and gaming apps for mobile devices aimed at children aged 2 to 10 and their families. Given the complexity of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja