Mostrar el registro sencillo del ítem

dc.contributor.authorSuárez-Cetrulo, Andrés L.
dc.contributor.authorQuintana, David
dc.contributor.authorCervantes, Alejandro
dc.date2023
dc.date.accessioned2023-03-23T13:18:46Z
dc.date.available2023-03-23T13:18:46Z
dc.identifier.citationSuárez-Cetrulo, A. L., Quintana, D., & Cervantes, A. (2022). A survey on machine learning for recurring concept drifting data streams. Expert Systems with Applications, 118934.es_ES
dc.identifier.issn0957-4174
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14409
dc.description.abstractThe problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time.es_ES
dc.language.isoenges_ES
dc.publisherExpert Systems with Applicationses_ES
dc.relation.ispartofseries;vol. 213
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0957417422019522?via%3Dihubes_ES
dc.rightsopenAccesses_ES
dc.subjectconcept driftes_ES
dc.subjectdata streamses_ES
dc.subjectmeta learninges_ES
dc.subjectonline machine learninges_ES
dc.subjectregime changees_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleA survey on machine learning for recurring concept drifting data streamses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.118934


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem