• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Customer churn prediction for web browsers

    Autor: 
    Wu, Xing
    ;
    Li, Pan
    ;
    Zhao, Ming
    ;
    Liu, Ying
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    Fecha: 
    2022
    Palabra clave: 
    attention mechanism; churn prediction; MBST; sequence models; tree-based models; Scopus; JCR
    Revista / editorial: 
    Expert Systems with Applications
    Citación: 
    Wu, X., Li, P., Zhao, M., Liu, Y., Crespo, R. G., & Herrera-Viedma, E. (2022). Customer churn prediction for web browsers. Expert Systems with Applications, 209, 118177.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14185
    DOI: 
    https://doi.org/10.1016/j.eswa.2022.118177
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0957417422013434?via%3Dihub
    Open Access
    Resumen:
    In the competitive web browser market, identifying potential churners is critical to decreasing the loss of existing customers. Churn prediction based on customer behaviors plays a vital role in customer retention strategies. However, traditional churn prediction algorithms such as Tree-based models cannot exploit the temporal characteristics of browser customers behaviors, while sequence models cannot explicitly extract the information between multiple behaviors. To meet this challenge, we propose a novel model named Multivariate Behavior Sequence Transformer (MBST) with two complementary attention mechanisms to explore the temporal and behavioral information separately. Furthermore, a Tree-based classifier is attached for churn prediction instead of using the multilayer perceptron. Extensive experiments on a real-world Tencent QQ browser dataset with over 600,000 samples demonstrate that the proposed MBST achieves the F-score of 82.72% and the Area Under Curve (AUC) of 93.75%, which significantly outperforms state-of-the-art methods in terms of churn prediction.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: customer_churn_prediction_web_browsers.pdf
    Tamaño: 1.199Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    37
    98
    68
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    91
    133
    149

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak 

      Liu, Xian-Xian; Fong, Simon James; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Applied intelligence, 2021)
      Measuring the spread of disease during a pandemic is critically important for accurately and promptly applying various lockdown strategies, so to prevent the collapse of the medical system. The latest pandemic of COVID-19 ...
    • Modelling dynamics of coronavirus disease 2019 spread for pandemic forecasting based on Simulink 

      Liu, Xian-Xian; Hu, Shimin; Fong, Simon James; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Physical biology, 2021)
      In this paper, we demonstrate the application of MATLAB to develop a pandemic prediction system based on Simulink. The susceptible-exposed-asymptomatic but infectious-symptomatic and infectious (severe infected population ...
    • Dealing with group decision-making environments that have a high amount of alternatives using card-sorting techniques 

      Morente-Molinera, Juan Antonio; Ríos Aguilar, Sergio ; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Expert Systems with Applications, 01/08/2019)
      Due to the appearance of Web 2.0 technologies and smartphones, the amount of information available to carry out group decision-making processes has increased dramatically. Therefore, there is a need for group decision-making ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja