Mostrar el registro sencillo del ítem

dc.contributor.authorWu, Xing
dc.contributor.authorLi, Pan
dc.contributor.authorZhao, Ming
dc.contributor.authorLiu, Ying
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.date2022
dc.date.accessioned2023-02-15T14:40:54Z
dc.date.available2023-02-15T14:40:54Z
dc.identifier.citationWu, X., Li, P., Zhao, M., Liu, Y., Crespo, R. G., & Herrera-Viedma, E. (2022). Customer churn prediction for web browsers. Expert Systems with Applications, 209, 118177.es_ES
dc.identifier.issn0957-4174
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14185
dc.description.abstractIn the competitive web browser market, identifying potential churners is critical to decreasing the loss of existing customers. Churn prediction based on customer behaviors plays a vital role in customer retention strategies. However, traditional churn prediction algorithms such as Tree-based models cannot exploit the temporal characteristics of browser customers behaviors, while sequence models cannot explicitly extract the information between multiple behaviors. To meet this challenge, we propose a novel model named Multivariate Behavior Sequence Transformer (MBST) with two complementary attention mechanisms to explore the temporal and behavioral information separately. Furthermore, a Tree-based classifier is attached for churn prediction instead of using the multilayer perceptron. Extensive experiments on a real-world Tencent QQ browser dataset with over 600,000 samples demonstrate that the proposed MBST achieves the F-score of 82.72% and the Area Under Curve (AUC) of 93.75%, which significantly outperforms state-of-the-art methods in terms of churn prediction.es_ES
dc.language.isoenges_ES
dc.publisherExpert Systems with Applicationses_ES
dc.relation.ispartofseries;vol. 209
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0957417422013434?via%3Dihubes_ES
dc.rightsopenAccesses_ES
dc.subjectattention mechanismes_ES
dc.subjectchurn predictiones_ES
dc.subjectMBSTes_ES
dc.subjectsequence modelses_ES
dc.subjecttree-based modelses_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleCustomer churn prediction for web browserses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.118177


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem