• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Modelling dynamics of coronavirus disease 2019 spread for pandemic forecasting based on Simulink

    Autor: 
    Liu, Xian-Xian
    ;
    Hu, Shimin
    ;
    Fong, Simon James
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    Fecha: 
    2021
    Palabra clave: 
    novel coronavirus; asymptomatic cases; process simulation; epidemiology; SEAIRD; Simulink; WOS(2); Scopus
    Revista / editorial: 
    Physical biology
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12308
    DOI: 
    https://doi.org/10.1088/1478-3975/abf990
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1478-3975/abf990
    Resumen:
    In this paper, we demonstrate the application of MATLAB to develop a pandemic prediction system based on Simulink. The susceptible-exposed-asymptomatic but infectious-symptomatic and infectious (severe infected population + mild infected population)-recovered-deceased (SEAI(I (1) + I (2))RD) physical model for unsupervised learning and two types of supervised learning, namely, fuzzy proportional-integral-derivative (PID) and wavelet neural-network PID learning, are used to build a predictive-control system model that enables self-learning artificial intelligence (AI)-based control. After parameter setting, the data entering the model are predicted, and the value of the data set at a future moment is calculated. PID controllers are added to ensure that the system does not diverge at the beginning of iterative learning. To adapt to complex system conditions and afford excellent control, a wavelet neural-network PID control strategy is developed that can be adjusted and corrected in real time, according to the output error.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    36
    37
    51
    27
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak 

      Liu, Xian-Xian; Fong, Simon James; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Applied intelligence, 2021)
      Measuring the spread of disease during a pandemic is critically important for accurately and promptly applying various lockdown strategies, so to prevent the collapse of the medical system. The latest pandemic of COVID-19 ...
    • Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak 

      Fong, Simon James; Li, Gloria; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (International Journal of Interactive Multimedia and Artificial Intelligence, 03/2020)
      Epidemic is a rapid and wide spread of infectious disease threatening many lives and economy damages. It is important to fore-tell the epidemic lifetime so to decide on timely and remedic actions. These measures include ...
    • Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction 

      Fong, Simon James; Li, Gloria; Dey, Nilanjan; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Applied Soft Computing Journal, 08/2020)
      In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. In computer science, this ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja