• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Effect of optimization framework on rigid and non-rigid multimodal image registration

    Autor: 
    Chakraborty, Sayan
    ;
    Pradhan, Ratika
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Tavares, Joao Manuel R. S.
    Fecha: 
    2022
    Palabra clave: 
    flower pollination algorithm; ant colony optimization; particle swarm optimization; JCR; Scopus
    Revista / editorial: 
    Scienceasias
    Citación: 
    Chakraborty, S., Pradhan, R., Dey, N., Crespo, R. G., & Tavares, J. M. R. (2022). Effect of optimization framework on rigid and non-rigid multimodal image registration.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14026
    DOI: 
    https://doi.org/10.2306/scienceasia1513-1874.2022.S001
    Dirección web: 
    http://www.scienceasia.org/content/viewabstract.php?ms=13090
    Open Access
    Resumen:
    The process of transforming or aligning two images is known as image registration. In the present era, image registration is one of the most popular transformation tools in case of, for example, satellite as well as medical imaging analysis. Images captured by difference devices that can be processed under same registration model are called multimodal images. In this work, we present a multimodal image registration framework, upon which ant colony optimization (ACO) and flower pollination algorithms (FPA), which are two meta heuristics algorithms, are applied in order to improve the performance of a proposed rigid and non-rigid multimodal registration framework and decrease its processing time. The results of the ACO and FPA based framework were compared against particle swarm optimization and Genetic algorithm-based framework's results and seem to be promising.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Effect_of_optimization_framework.pdf
    Tamaño: 1.142Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    78
    139
    81
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    30
    55
    122

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they ...
    • Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, ...
    • The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja