• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Lightweight Computational Intelligence for IoT Health Monitoring of Off-Road Vehicles: Enhanced Selection Log-Scaled Mutation GA Structured ANN

    Autor: 
    Gupta, Neeraj
    ;
    Khosravy, Mahdi
    ;
    Patel, Nilesh
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    Fecha: 
    2022
    Palabra clave: 
    artificial intelligence (AI); artificial neural network (ANN); edge computation; genetic algorithm (GA); off-road vehicles; Scopus; JCR
    Revista / editorial: 
    IEEE Computer Society
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13255
    DOI: 
    https://doi.org/10.1109/TII.2021.3072045
    Dirección web: 
    https://ieeexplore.ieee.org/document/9403917
    Resumen:
    Smart monitoring of off-road vehicles is cursed by their complex and expensive IoT sensors technologies. High dependence on the cloud/fog computation, availability of the network, and expert knowledge make it handicap in the rural off-network areas. Use of edge devices, such as smartphones, attributed by computation capabilities is the solution that is yet to be developed at commercial level (Fawwaz and Chung 2020) and (Zhengwei et al., 2021). Additionally, the user's growing demand for economic and user-friendly technology motivates to shift from costly and complex sensors to economic. In this article, we present the hybridized computational intelligence methodology to develop an edge-device-enabled AI technology for health monitoring and diagnosis (HM&D) of the off-road vehicles, taking use of super economic microphones as sensors. Smartphones are benefited by integrated microphones, and thus, the App-based developed technology is generalized for all vehicles from old to new. Enhanced selection and log-scaled mutation genetic algorithms is used to evolve the structure of the artificial neural network toward an optimally lightweight structure. Each evolved lightweight ANN structure is trained by scaled conjugate gradient back-propagation training algorithm to optimize corresponding weights and biases. The comparative results with currently reported genetic algorithms for edge computation prove it a breakthrough technology for edge-device-enabled HM&D of off-road vehicles (Yan et al., 2020).
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    61
    84
    70
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines 

      Gupta, Neeraj; Khosravy, Mahdi; Patel, Nilesh; Dey, Nilanjan; Gupta, Saurabh; Darbari, Hemant; González-Crespo, Rubén (Applied Sciences, 07/2020)
      In the era of Internet of things (IoT), network Connection of an enormous number of agriculture machines and service centers is an expectation. However, it will be with a generation of massive volume of data, thus overwhelming ...
    • Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm 

      Gupta, Neeraj; Khosravy, Mahdi; Gupta, Saurabh; Dey, Nilanjan; González-Crespo, Rubén (Springer, 02/2022)
      This paper focuses on developing a computationally economic lightweight artificial intelligence (AI) technology for smartphones. Until date, no commercial system is available on this technology. Thus the developed breakthrough ...
    • Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles 

      Gupta, Neeraj; Gupta, Saurabh; Khosravy, Mahdi; Dey, Nilanjan; Joshi, Nisheeth; González-Crespo, Rubén; Patel, Nilesh (Journal of intelligent manufacturing, 2022)
      Today’s Agriculture vehicles (AgV)s are expected to encompass mainly the three requirements of customers; economy, the use of High technology and reliability. In this manuscript, we investigate the technology solution for ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja