• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning

    Autor: 
    Pillai, Manu S.
    ;
    Chaudhary, Gopal
    ;
    Khari, Manju
    ;
    González-Crespo, Rubén
    Fecha: 
    2021
    Palabra clave: 
    automatic accident detection system; CCTV image processing; knowledge distillation; vehicle accident detection; vehicle tracking; YOLO; Scopus; JCR
    Revista / editorial: 
    Springer Science and Business Media Deutschland GmbH
    Tipo de Ítem: 
    article
    xmlui.dri2xhtml.METS-1.0.item-identifier: 
    1432-7643
    1432-7643
    URI: 
    https://reunir.unir.net/handle/123456789/13113
    DOI: 
    https://doi.org/10.1007/s00500-021-05576-w
    Dirección web: 
    https://link.springer.com/article/10.1007/s00500-021-05576-w
    Resumen:
    Almost all of the automatic accident detection (AAD) system suffers from the tradeoff between computational overhead and detection accuracy. Recent advances in detection and classification methodologies have shown phenomenal improvements in accuracy but these systems require a huge number of computational resources making them unviable for deployment requiring real-time feedback. This paper proposes a methodology to develop a reliable and computationally inexpensive real-time automatic accident detection system that can be deployed with minimum hardware requirements. Specifically, we split our AAD system into three major stages (Detection, Tracking and Classification) and propose algorithms for each stage with reduced computational need. For the detection stage, we propose Mini-YOLO, a deep learning model architecture trained using knowledge distillation that has comparable accuracy with its counterpart YOLO(You-Only-Look-Once) with reduced model size and computational overhead. Mini-YOLO achieves an average precision (AP) score of 34.2 on the MS-COCO dataset while outperforming all other detection algorithms in runtime complexity, achieving a staggering 28 frames per second on a low-end machine. For the tracking stage, we adopt SORT (Simple Online Real-time Tracking) and for classification stage, we compare multiple machine learning algorithms and show that a support vector machine with radial basis kernel performs the best with an area under the curve (AUC) score of 0.98, model size of 448 KB (kilobytes) and 12.73 ms (milliseconds) latency.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    54
    77
    98
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Exploiting feature space using overlapping windows for improving biometric recognition 

      Kaur, Surinder; Chaudhary, Gopal; Srivastava, Smriti; Khari, Manju; González-Crespo, Rubén (Computers&Electrical Engineering, 2021)
      Biometrics is a highly researched topic due to its importance in security, surveillance, and authentication systems. Granulation is the procedure of partitioning data into windows. Two novel feature extraction techniques ...
    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...
    • Optimized test suites for automated testing using different optimization techniques 

      Khari, Manju; Kumar, Prabbat; Burgos, Daniel ; González-Crespo, Rubén (Soft Computing, 2017)
      Automated testing mitigates the risk of test maintenance failure, selects the optimized test suite, improves efficiency and hence reduces cost and time consumption. This paper is based on the development of an automated ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja