Mostrar el registro sencillo del ítem

dc.contributor.authorPillai, Manu S.
dc.contributor.authorChaudhary, Gopal
dc.contributor.authorKhari, Manju
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2021
dc.date.accessioned2022-05-17T12:20:17Z
dc.date.available2022-05-17T12:20:17Z
dc.identifier1432-7643
dc.identifier1432-7643
dc.identifier.issn1432-7643
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13113
dc.description.abstractAlmost all of the automatic accident detection (AAD) system suffers from the tradeoff between computational overhead and detection accuracy. Recent advances in detection and classification methodologies have shown phenomenal improvements in accuracy but these systems require a huge number of computational resources making them unviable for deployment requiring real-time feedback. This paper proposes a methodology to develop a reliable and computationally inexpensive real-time automatic accident detection system that can be deployed with minimum hardware requirements. Specifically, we split our AAD system into three major stages (Detection, Tracking and Classification) and propose algorithms for each stage with reduced computational need. For the detection stage, we propose Mini-YOLO, a deep learning model architecture trained using knowledge distillation that has comparable accuracy with its counterpart YOLO(You-Only-Look-Once) with reduced model size and computational overhead. Mini-YOLO achieves an average precision (AP) score of 34.2 on the MS-COCO dataset while outperforming all other detection algorithms in runtime complexity, achieving a staggering 28 frames per second on a low-end machine. For the tracking stage, we adopt SORT (Simple Online Real-time Tracking) and for classification stage, we compare multiple machine learning algorithms and show that a support vector machine with radial basis kernel performs the best with an area under the curve (AUC) score of 0.98, model size of 448 KB (kilobytes) and 12.73 ms (milliseconds) latency.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Science and Business Media Deutschland GmbHes_ES
dc.relation.ispartofseries;vol. 25, nº 18
dc.relation.urihttps://link.springer.com/article/10.1007/s00500-021-05576-wes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectautomatic accident detection systemes_ES
dc.subjectCCTV image processinges_ES
dc.subjectknowledge distillationes_ES
dc.subjectvehicle accident detectiones_ES
dc.subjectvehicle trackinges_ES
dc.subjectYOLOes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleReal-time image enhancement for an automatic automobile accident detection through CCTV using deep learninges_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s00500-021-05576-w


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem