• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Emotion stimuli-based surface electromyography signal classification employing Markov transition field and deep neural networks

    Autor: 
    Li, Rongjie
    ;
    Wu, Yao
    ;
    Wu, Qun
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén (1)
    ;
    Shi, Fuqian
    Fecha: 
    2021
    Palabra clave: 
    deep neural networks; Markov transition field; signal classification; signal image transition; surface electromyography; Scopus
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12845
    DOI: 
    https://doi.org/10.1016/j.measurement.2021.110470
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S0263224121013555?via%3Dihub
    Resumen:
    Surface electromyography (sEMG) has been widely used in clinical medicine, rehabilitation medicine, and intelligent robots. Currently, sEMG signal classification methods promoted the development and industrialization of sEMG control bionic prostheses. Emotion recognition using sEMG signal is crucial in human–computer interaction (HCI) and becoming a research hotspot. While the high rate of emotion recognition is still the key issue for the emotion applications. Employing sEMG to study emotion classification can improve the recognition rate and eliminate subjective interference. In this research, the Markov transition field (MTF) method was applied to convert sEMG signals to images; and this crucial converting process makes convolutional neural networks adopting the input resource. A 69-INPUT-6 -OUTPUT primary deep neural network was constructed for classifying the human emotion states under emotion stimuli experiment. The MTF-based deep neural network (MTF-DNN) for classifying sEMG signals was developed and validated subsequently. The result showed that the high effectiveness of the proposed classification model. The proposed MTFDNN performs high efficacy in the indices of classification of Ac (0.9102), Pr (0.1867), and Fm (0.9089) by comparing with different classification models.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks 

      Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén (1); Simon Sherratt, R. (Applied Soft Computing, 12/2020)
      Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ...
    • Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks 

      Wu, Qun; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén (1); Sherratt, Simon (Elsevier Ltd, 2021)
      Emotion produces complex neural processes and physiological changes under appropriate event stimulation. Physiological signals have the advantage of better reflecting a person's actual emotional state than facial expressions ...
    • Plantar pressure image classification employing residual-network model-based conditional generative adversarial networks: a comparison of normal, planus, and talipes equinovarus feet 

      Han, J.; Wang, D; Li, Z.; Dey, Nilanjan; González-Crespo, Rubén (1); Shi, Fuqian (Springer Science and Business Media Deutschland GmbH, 2021)
      The number of deep learning (DL) layers increases, and following the performance of computing nodes improvement, the output accuracy of deep neural networks (DNN) faces a bottleneck problem. The resident network (RN) based ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja