• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Inadequate dataset learning for major depressive disorder MRI semantic classification

    Autor: 
    Liu, Jie
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Shi, Fuqian
    ;
    Liu, Chanjuan
    Fecha: 
    2022
    Palabra clave: 
    alzeimers-disease; JCR; Scopus
    Revista / editorial: 
    IET Image Processing
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/13596
    DOI: 
    https://doi.org/10.1049/ipr2.12437
    Dirección web: 
    https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ipr2.12437
    Open Access
    Resumen:
    Predicting patients with major depression (MDD) is currently a difficult task. Magnetic resonance imaging (MRI) data analysis may provide insight into individual patient responses, allowing for more customized treatment decisions. Due to the absence of brain MRI data for MDD patients, a transfer learning (TL) method developed is used using calculation criteria. Combining an Inception-v3 neural network with a typical pre-trained neural network, the move learning-based Inception-v3 was proposed for the classification of MDD MRI datasets. An experiment was performed on the classification of eight semantic emotions (defined by IMAPS). Compared to other methods, the proposed method performs high efficiency for 90-10% and 80-20% (positive and negative classes), normal (N), unnormal (UN), and average/total sets, and for 70-30%, accuracy (A) is 92.90%, area under the curve (AUC) is 94.23%, and average precision score (APS) is 95.75%. Individual patients' responses to emotional stimulation can be predicted using the proposed methods, which can provide guidance in diagnosis and prognosis.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    16
    43
    95
    195
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Brain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networks 

      Liu, Jie; Dey, Nilanjan; Das, Nabanita; González-Crespo, Rubén ; Shi, Fuqian; Liu, Chanjuan (Applied Soft Computing, 2022)
      Functional magnetic resonance imaging (fMRI) is widely used for clinical examinations, diagnosis, and treatment. By segmenting fMRI images, large-scale medical image data can be processed more efficiently. Most deep learning ...
    • Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks 

      Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén ; Simon Sherratt, R. (Applied Soft Computing, 12/2020)
      Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ...
    • Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks 

      Wu, Qun; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén ; Sherratt, Simon (Elsevier Ltd, 2021)
      Emotion produces complex neural processes and physiological changes under appropriate event stimulation. Physiological signals have the advantage of better reflecting a person's actual emotional state than facial expressions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja