• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks

    Autor: 
    Wu, Qun
    ;
    Dey, Nilanjan
    ;
    Shi, Fuqian
    ;
    González-Crespo, Rubén (1)
    ;
    Sherratt, Simon
    Fecha: 
    2021
    Palabra clave: 
    electroencephalogram; emotion stimuli; eye-tracking; fused deep neural network; gaussian mixed model; signal process; Scopus; WOS(2)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13175
    DOI: 
    https://doi.org/10.1016/j.asoc.2021.107752
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S1568494621006736?via%3Dihub
    Resumen:
    Emotion produces complex neural processes and physiological changes under appropriate event stimulation. Physiological signals have the advantage of better reflecting a person's actual emotional state than facial expressions or voice signals. An electroencephalogram (EEG) is a signal obtained by collecting, amplifying, and recording the human brain's weak bioelectric signals on the scalp. The eye-tracking (E.T.) signal records the potential difference between the retina and the cornea and the potential generated by the eye movement muscle. Furthermore, the different modalities of physiological signals will contain various information representations of human emotions. Finding this different modal information is of great help to get higher recognition accuracy. The E.T. and EEG signals are synchronized and fused in this research, and an effective deep learning (DL) method was used to combine different modalities. This article proposes a technique based on a fusion model of the Gaussian mixed model (GMM) with the Butterworth and Chebyshev signal filter. Features extraction on EEG and E.T. are subsequently calculated. Secondly, the self-similarity (SSIM), energy (E), complexity (C), high order crossing (HOC), and power spectral density (PSD) for EGG, and electrooculography power density estimation ((EOG-PDE), center gravity frequency (CGF), frequency variance (F.V.), root mean square frequency (RMSF) for E.T. are selected hereafter; the max–min method is applied for vector normalization. Finally, a deep gradient neural network (DGNN) for EEG and E.T. multimodal signal classification is proposed. The proposed neural network predicted the emotions under the eight emotions event stimuli experiment with 88.10% accuracy. For the evaluation indices of accuracy (Ac), precision (Pr), recall (Re), F-measurement (Fm), precision–recall (P.R.) curve, true-positive rate (TPR) of receiver operating characteristic curve (ROC), the area under the curve (AUC), true-accept rate (TAR), and interaction on union (IoU), the proposed method also performs with high efficiency compared with several typical neural networks including the artificial neural network (ANN), SqueezeNet, GoogleNet, ResNet-50, DarkNet-53, ResNet-18, Inception-ResNet, Inception-v3, and ResNet-101.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks 

      Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén (1); Simon Sherratt, R. (Applied Soft Computing, 12/2020)
      Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ...
    • Emotion stimuli-based surface electromyography signal classification employing Markov transition field and deep neural networks 

      Li, Rongjie; Wu, Yao; Wu, Qun; Dey, Nilanjan; González-Crespo, Rubén (1); Shi, Fuqian (Elsevier B.V., 2021)
      Surface electromyography (sEMG) has been widely used in clinical medicine, rehabilitation medicine, and intelligent robots. Currently, sEMG signal classification methods promoted the development and industrialization of ...
    • Adjectives Grouping in a Dimensionality Affective Clustering Model for Fuzzy Perceptual Evaluation 

      Huang, Wenlin; Wu, Qun; Dey, Nilanjan; Ashour, Amira S.; Fong, Simon James; González-Crespo, Rubén (1) (International Journal of Interactive Multimedia and Artificial Intelligence, 06/2020)
      More and more products are no longer limited to the satisfaction of the basic needs, but reflect the emotional interaction between people and environment. The characteristics of user emotions and their evaluation scales ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja