Plantar pressure image classification employing residual-network model-based conditional generative adversarial networks: a comparison of normal, planus, and talipes equinovarus feet
Autor:
Han, J.
; Wang, D
; Li, Z.
; Dey, Nilanjan
; González-Crespo, Rubén
; Shi, Fuqian
Fecha:
2023Palabra clave:
Revista / editorial:
Springer Science and Business Media Deutschland GmbHCitación:
Han, J., Wang, D., Li, Z. et al. Plantar pressure image classification employing residual-network model-based conditional generative adversarial networks: a comparison of normal, planus, and talipes equinovarus feet. Soft Comput 27, 1763–1782 (2023). https://doi.org/10.1007/s00500-021-06073-wTipo de Ítem:
articleDirección web:
https://link.springer.com/article/10.1007/s00500-021-06073-wResumen:
The number of deep learning (DL) layers increases, and following the performance of computing nodes improvement, the output accuracy of deep neural networks (DNN) faces a bottleneck problem. The resident network (RN) based DNN model was applied to address these issues recently. This paper improved the RN and developed a rectified linear unit (ReLU) based conditional generative adversarial nets (cGAN) to classify plantar pressure images. A foot scan system collected the plantar pressure images, in which normal (N), planus (PL), and talipes equinovarus feet (TE) data-sets were acquired subsequently. The 9-foot types named N, PL, TE, N-PL, N-TE, PL-N, PL-TE, TE-N, and TE-PL were classified using the proposed DNN models, named resident network-based conditional generative adversarial nets (RNcGAN). It improved the RN structure firstly and the cGAN system hereafter. In the classification of plantar pressure images, the pixel-level state matrix can be direct as an input, different from the previous image classification task with image reduction and feature extraction. cGAN can directly output the pixels of the image without any simplification. Finally, the model achieved better results in the evaluation indicators of accuracy (AC), sensitivity (SE), and F1-measurement (F1) by comparing to artificial neural networks (ANN), k-nearest neighbor (kNN), Fast Region-based Convolution Neural Network (Fast R-CNN), visual geometry group (VGG16), scaled-conjugate-gradient convolution neural networks (SCG-CNN), GoogleNet, AlexNet, ResNet-50–177, and Inception-v3. The final prediction of class accuracy is 95.17%. Foot type classification is vital for producing comfortable shoes in the industry. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
41 |
60 |
73 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks
Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén ; Simon Sherratt, R. (Applied Soft Computing, 12/2020)Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ... -
Inadequate dataset learning for major depressive disorder MRI semantic classification
Liu, Jie; Dey, Nilanjan; González-Crespo, Rubén ; Shi, Fuqian; Liu, Chanjuan (IET Image Processing, 2022)Predicting patients with major depression (MDD) is currently a difficult task. Magnetic resonance imaging (MRI) data analysis may provide insight into individual patient responses, allowing for more customized treatment ... -
Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks
Wu, Qun; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén ; Sherratt, Simon (Elsevier Ltd, 2021)Emotion produces complex neural processes and physiological changes under appropriate event stimulation. Physiological signals have the advantage of better reflecting a person's actual emotional state than facial expressions ...