• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Plantar pressure image classification employing residual-network model-based conditional generative adversarial networks: a comparison of normal, planus, and talipes equinovarus feet

    Autor: 
    Han, J.
    ;
    Wang, D
    ;
    Li, Z.
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén (1)
    ;
    Shi, Fuqian
    Fecha: 
    2021
    Palabra clave: 
    conditional generative adversarial network; deep neural networks; image classification; plantar pressure; resident network; Scopus; JCR
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12642
    DOI: 
    https://doi.org/10.1007/s00500-021-06073-w
    Dirección web: 
    https://link.springer.com/article/10.1007/s00500-021-06073-w
    Resumen:
    The number of deep learning (DL) layers increases, and following the performance of computing nodes improvement, the output accuracy of deep neural networks (DNN) faces a bottleneck problem. The resident network (RN) based DNN model was applied to address these issues recently. This paper improved the RN and developed a rectified linear unit (ReLU) based conditional generative adversarial nets (cGAN) to classify plantar pressure images. A foot scan system collected the plantar pressure images, in which normal (N), planus (PL), and talipes equinovarus feet (TE) data-sets were acquired subsequently. The 9-foot types named N, PL, TE, N-PL, N-TE, PL-N, PL-TE, TE-N, and TE-PL were classified using the proposed DNN models, named resident network-based conditional generative adversarial nets (RNcGAN). It improved the RN structure firstly and the cGAN system hereafter. In the classification of plantar pressure images, the pixel-level state matrix can be direct as an input, different from the previous image classification task with image reduction and feature extraction. cGAN can directly output the pixels of the image without any simplification. Finally, the model achieved better results in the evaluation indicators of accuracy (AC), sensitivity (SE), and F1-measurement (F1) by comparing to artificial neural networks (ANN), k-nearest neighbor (kNN), Fast Region-based Convolution Neural Network (Fast R-CNN), visual geometry group (VGG16), scaled-conjugate-gradient convolution neural networks (SCG-CNN), GoogleNet, AlexNet, ResNet-50–177, and Inception-v3. The final prediction of class accuracy is 95.17%. Foot type classification is vital for producing comfortable shoes in the industry. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Simplified inverse filter tracked affective acoustic signals classification incorporating deep convolutional neural networks 

      Kuang, Yuxiang; Wu, Qun; Wang, Ying; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén (1); Simon Sherratt, R. (Applied Soft Computing, 12/2020)
      Facial expressions, verbal, behavioral, such as limb movements, and physiological features are vital ways for affective human interactions. Researchers have given machines the ability to recognize affective communication ...
    • Emotion stimuli-based surface electromyography signal classification employing Markov transition field and deep neural networks 

      Li, Rongjie; Wu, Yao; Wu, Qun; Dey, Nilanjan; González-Crespo, Rubén (1); Shi, Fuqian (Elsevier B.V., 2021)
      Surface electromyography (sEMG) has been widely used in clinical medicine, rehabilitation medicine, and intelligent robots. Currently, sEMG signal classification methods promoted the development and industrialization of ...
    • Emotion classification on eye-tracking and electroencephalograph fused signals employing deep gradient neural networks 

      Wu, Qun; Dey, Nilanjan; Shi, Fuqian; González-Crespo, Rubén (1); Sherratt, Simon (Elsevier Ltd, 2021)
      Emotion produces complex neural processes and physiological changes under appropriate event stimulation. Physiological signals have the advantage of better reflecting a person's actual emotional state than facial expressions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja