• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Using Meta-Learning to predict student performance in virtual learning environments

    Autor: 
    Casado Hidalgo, Ángel
    ;
    Moreno-Ger, Pablo
    ;
    De la Fuente-Valentin, Luis
    Fecha: 
    2022
    Palabra clave: 
    deep neural networks; educational data mining; learning analytics; meta-learning; student performance; Scopus; JCR
    Revista / editorial: 
    Applied Intelligence
    Citación: 
    Hidalgo, Á.C., Ger, P.M. & Valentín, L.D.L.F. Using Meta-Learning to predict student performance in virtual learning environments. Appl Intell 52, 3352–3365 (2022). https://doi.org/10.1007/s10489-021-02613-x
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12606
    DOI: 
    https://doi.org/10.1007/s10489-021-02613-x
    Dirección web: 
    https://link.springer.com/article/10.1007/s10489-021-02613-x
    Resumen:
    Educational Data Science has meant an important advancement in the understanding and improvemen of learning models in recent years. One of the most relevant research topics is student performance prediction through click-stream activity in virtual learning environments, which provide abundant information about their behaviour during the course. This work explores the potential of Deep Learning and Meta-Learning in this field, which has thus far been explored very little, so that it can serve as a basis for future studies. We implemented a predictive model which is able to automatically optimise the architecture and hyperparameters of a deep neural network, taking as a use case an educational dataset that contains information from more than 500 students from an online university master’s degree. The results show that the performance of the autonomous model was similar to the traditionally designed one, which offers significant benefits in terms of efficiency and scalability. This also opens up interesting areas of research related to Meta-Learning applied to educational Big Data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: using_meta-learning_to_predict_student_performance_in_virtual_learning_environments_preprint.pdf
    Tamaño: 2.050Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    77
    98
    117
    108
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    99
    141
    290

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Towards the Grade’s Prediction. A Study of Different Machine Learning Approaches to Predict Grades from Student Interaction Data 

      Alonso-Misol Gerlache, Héctor; Moreno-Ger, Pablo; de-la-Fuente-Valentín, Luis (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2022)
      There is currently an open problem within the field of Artificial Intelligence applied to the educational field, which is the prediction of students’ grades. This problem aims to predict early school failure and dropout, ...
    • Learning Pathway Recommendation based on a Pedagogical Ontology and its Implementation in Moodle 

      Henning, Peter A; Forstner, Alexandra; Heberle, Florian; Swertz, Christian; Schmölz, Alexander; Barberi, Alessandro; Verdú, Elena; Regueras, Luisa M.; Verdú, María J; de Castro, Juan-Pablo; Burgos, Daniel; De la Fuente-Valentin, Luis; Gal, Eran; Parodi, Elisabetta; Schwertel, Uta; Steudter, Sven (Lecture Notes in Informatics, 2014)
      When learners may select among different alternatives, or are guided to do so by an adaptive learning environment (ALE), it is generally meaningful to discuss the concept of different learning pathways. Pedagogically, these ...
    • Challenges of online higher education in the face of the sustainability objectives of the united nations: Carbon footprint, accessibility and social inclusion 

      Perales, Mikel ; Pedraza, Luis ; Moreno-Ger, Pablo ; Bocos, Elvira (Sustainability (Switzerland), 01/10/2019)
      This article analyses three of the Sustainable Development Goals (SDGs) gathered by the 2030 Agenda and adopted by the United Nations, and how online educational models may help to reach these goals. Specifically, the three ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja