• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    Towards the Grade’s Prediction. A Study of Different Machine Learning Approaches to Predict Grades from Student Interaction Data

    Autor: 
    Alonso-Misol Gerlache, Héctor
    ;
    Moreno-Ger, Pablo
    ;
    de-la-Fuente-Valentín, Luis
    Fecha: 
    06/2022
    Palabra clave: 
    artificial intelligence; grade prediction; machine learning; prediction technology; IJIMAI; Scopus; JCR
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13580
    DOI: 
    https://doi.org/10.9781/ijimai.2021.11.007
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3051
    Open Access
    Resumen:
    There is currently an open problem within the field of Artificial Intelligence applied to the educational field, which is the prediction of students’ grades. This problem aims to predict early school failure and dropout, and to determine the well-founded analysis of student performance for the improvement of educational quality. This document deals the problem of predicting grades of UNIR university master’s degree students in the on-line mode, proposing a working model and comparing different technologies to determine which one fits best with the available data set. In order to make the predictions, the dataset was submitted to a cleaning and analysis phases, being prepared for the use of Machine Learning algorithms, such as Naive Bayes, Decision Tree, Random Forest and Neural Networks. A comparison is made that addresses a double prediction on a homogeneous set of input data, predicting the final grade per subject and the final master’s degree grade. The results were obtained demonstrate that the use of these techniques makes possible the grade predictions. The data gives some figures in which we can see how Artificial Intelligence is able to predict situations with an accuracy above 96%.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_17.pdf
    Tamaño: 929.3Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    26
    87
    104
    130
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    14
    147
    92
    127

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Using Meta-Learning to predict student performance in virtual learning environments 

      Casado Hidalgo, Ángel; Moreno-Ger, Pablo; De la Fuente-Valentin, Luis (Applied Intelligence, 2022)
      Educational Data Science has meant an important advancement in the understanding and improvemen of learning models in recent years. One of the most relevant research topics is student performance prediction through ...
    • Prediction of footwear demand using Prophet and SARIMA 

      Negre, Pablo; Alonso, Ricardo S.; Prieto, Javier; García, Óscar; de-la-Fuente-Valentín, Luis (Expert Systems with Applications, 2024)
      In an increasingly globalized market, where world container traffic since 2000 has almost quadrupled, the prediction of demand is an element of great importance for the optimal business development of a company. This work ...
    • Challenges of online higher education in the face of the sustainability objectives of the united nations: Carbon footprint, accessibility and social inclusion 

      Perales, Mikel ; Pedraza, Luis ; Moreno-Ger, Pablo ; Bocos, Elvira (Sustainability (Switzerland), 01/10/2019)
      This article analyses three of the Sustainable Development Goals (SDGs) gathered by the 2030 Agenda and adopted by the United Nations, and how online educational models may help to reach these goals. Specifically, the three ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja