• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Heterogeneous computing model for post-injury walking pattern restoration and postural stability rehabilitation exercise recognition

    Autor: 
    Bijalwan, Vishwanath
    ;
    Semwal, V.B.
    ;
    Singh, G.
    ;
    González-Crespo, Rubén
    Fecha: 
    2022
    Palabra clave: 
    CNN-LSTM (CNN-Long short term memory); convolutional neural network (CNN); Kinect sensor; postural instability; rehabilitation exercises; Fugl-Meyer assessment scale; Kinect sensor; postural instability; rehabilitation exercises; Scopus; JCR
    Revista / editorial: 
    Blackwell Publishing Ltd
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12496
    DOI: 
    https://doi.org/10.1111/exsy.12706
    Dirección web: 
    https://onlinelibrary.wiley.com/doi/10.1111/exsy.12706
    Resumen:
    The research paper presents the heterogeneous computing model for analysis & restoration of human walking deformity and posture instability. Gait-related walking activities are very important for the analysis of postural instability, repairment of gait abnormality, diagnosis of cognitive declination, enhance the cognitive ability of human-centered humanoid robot system, and many clinical diagnoses, for example, Parkinson, pathological gait, freezing of gait, etc. at an early stage. For experiment analysis, 10 different lower limb activities are being considered of healthy and crouch walking subjects. A total of 25 healthy and 10 crouch walk subjects are considered for experiment purposes of different age groups, sex, and mental status. To achieve this objective the pattern of 10 different rehabilitation activities are captured using RGB-Depth (RGB-D) camera and classified using heterogeneous deep learning models. Different deep learning models Convolutional Neural Network (CNN) and CNN-LSTM (CNN-Long Short Term Memory) are used for the classification of these rehabilitation exercises. The RGB-D data is obtained using a Microsoft Kinect v2 sensor on a 100 Hz sampling frequency. Experimental results have shown significant activity recognition accuracy with 96% and 98% for CNN and CNN-LSTM models respectively. © 2021 John Wiley & Sons Ltd.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    43
    33
    67
    70
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Preface 

      Singh, Vijendra; Asari, Vijayan K.; Li, Kuan-Ching; González-Crespo, Rubén (Procedia Computer Science, 2022)
      We are pleased to present this special issue of Elsevier’s Procedia Computer Science Journal, which consists of the proceedings of the international conference on Machine Learning and Data Engineering (ICMLDE 2022).
    • Special Issue on Human Computer Interaction: INTERACCIÓN 2014 

      González-Crespo, Rubén ; González González, Carina S (IEEE Latin America Transactions, 02/2015)
      This special issue of the IEEE Latin America Transactions journal includes a selection of the four best papers presented at the 15th International Conference on Human Computer Interaction (INTERACCIÓN 2014) held in ...
    • Usage of machine learning for strategic decision making at Higher Educational Institutions 

      Nieto, Yuri; García-Díaz, Vicente; Montenegro, Carlos Enrique; González, Claudio Camilo; González-Crespo, Rubén (IEEE Access, 2019)
      Decisions made at the strategic level of Higher Educational Institutions (HEIs) affect policies, strategies, and actions that the institutions make as a whole. Decision's structures at HEIs are depicted in this paper and ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja