• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Usage of machine learning for strategic decision making at Higher Educational Institutions

    Autor: 
    Nieto, Yuri
    ;
    García-Díaz, Vicente
    ;
    Montenegro, Carlos Enrique
    ;
    González, Claudio Camilo
    ;
    González-Crespo, Rubén
    Fecha: 
    2019
    Palabra clave: 
    decision trees; random forest; logistic regressions; machine learning; strategic decisions; Higher Educational Institutions; JCR; Scopus
    Revista / editorial: 
    IEEE Access
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/8766
    DOI: 
    https://doi.org/10.1109/ACCESS.2019.2919343
    Dirección web: 
    https://ieeexplore.ieee.org/document/8723336
    Open Access
    Resumen:
    Decisions made at the strategic level of Higher Educational Institutions (HEIs) affect policies, strategies, and actions that the institutions make as a whole. Decision's structures at HEIs are depicted in this paper and their effectiveness in supporting the institution's governance. The disengagement of the stakeholders and the lack of using efficient computational algorithms lead to 1) the decision process takes longer; 2) the "whole picture" is not involved along with all data necessary; and 3) small academic impact is produced by the decision, among others. Machine learning is an emerging field of artificial intelligence that using various algorithms analyzes information and provides a richer understanding of the data contained in a specific context. Based on the author's previous works, we focus on supporting decision-making at a strategic level, being deans' concerns the preeminent mission to bolster. In this paper, three supervised classification algorithms are deployed to predict graduation rates from real data about undergraduate engineering students in South America. The analysis of receiver operating characteristic (ROC) curve and accuracy are executed as measures of effectiveness to compare and evaluate decision tree, logistic regression, and random forest, where this last one demonstrates the best outcomes.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    76
    81
    44
    73
    57
    84
    46
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Supporting academic decision making at higher educational institutions using machine learning-based algorithms 

      Nieto, Yuri; García-Díaz, Vicente; Montenegro, Carlos Enrique; González-Crespo, Rubén (Soft Computing, 2018)
      Decisions made by deans and university managers greatly impact the entire academic community as well as society as a whole. In this paper, we present survey results on which academic decisions they concern and the variables ...
    • A proposal to a decision support system with learning analytics 

      Nieto Acevedo, Yuri Vanessa; Montenegro Marin, Carlos Enrique; Gaona-García, Paulo Alonso; González-Crespo, Rubén (IEEE Global Engineering Education Conference, EDUCON, 2018)
      Learning Analytics has acquire significance on the educational field due to it discovers hidden patterns once the data is processed and integrated in real case of use. Additionally it offers to stakeholder's support to ...
    • A deep learning architecture for power management in smart cities 

      Xin, Qin; Alazab, Mamoun; García Díaz, Vicente; Montenegro-Marin, Carlos Enrique; González-Crespo, Rubén (Elsevier Ltd, 2022)
      Sustainable energy management is an inexpensive approach for improved energy use. However, the research used does not focus on cutting-edge technology possibilities in an Internet of things (IoT). This paper includes the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja