Mostrar el registro sencillo del ítem

dc.contributor.authorBijalwan, Vishwanath
dc.contributor.authorSemwal, V.B.
dc.contributor.authorSingh, G.
dc.contributor.authorGonzález-Crespo, Rubén
dc.date2022
dc.date.accessioned2022-02-23T12:43:36Z
dc.date.available2022-02-23T12:43:36Z
dc.identifier.issn02664720
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12496
dc.description.abstractThe research paper presents the heterogeneous computing model for analysis & restoration of human walking deformity and posture instability. Gait-related walking activities are very important for the analysis of postural instability, repairment of gait abnormality, diagnosis of cognitive declination, enhance the cognitive ability of human-centered humanoid robot system, and many clinical diagnoses, for example, Parkinson, pathological gait, freezing of gait, etc. at an early stage. For experiment analysis, 10 different lower limb activities are being considered of healthy and crouch walking subjects. A total of 25 healthy and 10 crouch walk subjects are considered for experiment purposes of different age groups, sex, and mental status. To achieve this objective the pattern of 10 different rehabilitation activities are captured using RGB-Depth (RGB-D) camera and classified using heterogeneous deep learning models. Different deep learning models Convolutional Neural Network (CNN) and CNN-LSTM (CNN-Long Short Term Memory) are used for the classification of these rehabilitation exercises. The RGB-D data is obtained using a Microsoft Kinect v2 sensor on a 100 Hz sampling frequency. Experimental results have shown significant activity recognition accuracy with 96% and 98% for CNN and CNN-LSTM models respectively. © 2021 John Wiley & Sons Ltd.es_ES
dc.language.isoenges_ES
dc.publisherBlackwell Publishing Ltdes_ES
dc.relation.ispartofseries;online
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1111/exsy.12706es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectCNN-LSTM (CNN-Long short term memory)es_ES
dc.subjectconvolutional neural network (CNN)es_ES
dc.subjectKinect sensor; postural instability; rehabilitation exerciseses_ES
dc.subjectFugl-Meyer assessment scalees_ES
dc.subjectKinect sensores_ES
dc.subjectpostural instabilityes_ES
dc.subjectrehabilitation exerciseses_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleHeterogeneous computing model for post-injury walking pattern restoration and postural stability rehabilitation exercise recognitiones_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1111/exsy.12706


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem