• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Real-time measurement of the uncertain epidemiological appearances of COVID-19 infections

    Autor: 
    Gupta, Meenu
    ;
    Jain, Rachna
    ;
    Taneja, Soham
    ;
    Chaudhary, Gopal
    ;
    Khari, Manju
    ;
    Verdú, Elena (1)
    Fecha: 
    2021
    Palabra clave: 
    COVID-19; deep learning; epidemiology; LSTM; outbreak; Scopus; WOS(2)
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11594
    DOI: 
    https://doi.org/10.1016/j.asoc.2020.107039
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S1568494620309777?via%3Dihub
    Resumen:
    Virus diseases are a continued threat to human health in both community and healthcare settings. The current virus disease COVID-19 outbreak raises an unparalleled public health issue for the world at large. Wuhan is the city in China from where this virus came first and, after some time the whole world was affected by this severe disease. It is a challenge for every country's people and higher authorities to fight with this battle due to the insufficient number of resources. On-going assessment of the epidemiological features and future impacts of the COVID-19 disease is required to stay up-to-date of any changes to its spread dynamics and foresee needed resources and consequences in different aspects as social or economic ones. This paper proposes a prediction model of confirmed and death cases of COVID-19. The model is based on a deep learning algorithm with two long short-term memory (LSTM) layers. We consider the available infection cases of COVID-19 in India from January 22, 2020, till October 9, 2020, and parameterize the model. The proposed model is an inference to obtain predicted coronavirus cases and deaths for the next 30 days, taking the data of the previous 260 days of duration of the pandemic. The proposed deep learning model has been compared with other popular prediction methods (Support Vector Machine, Decision Tree and Random Forest) showing a lower normalized RMSE. This work also compares COVID-19 with other previous diseases (SARS, MERS, h1n1, Ebola, and 2019-nCoV). Based on the mortality rate and virus spread, this study concludes that the novel coronavirus (COVID-19) is more dangerous than other diseases.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    37
    2
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (1) (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...
    • An Enhanced Texture-Based Feature Extraction Approach for Classification of Biomedical Images of CT-Scan of Lungs 

      Srivastava, Varun; Gupta, Shilp; Chaudhary, Gopal; Balodi, Arun; Khari, Manju; García-Díaz, Vicente (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Content Based Image Retrieval (CBIR) techniques based on texture have gained a lot of popularity in recent times. In the proposed work, a feature vector is obtained by concatenation of features extracted from local mesh ...
    • Voltage Regulation using Probabilistic and Fuzzy Controlled Dynamic Voltage Restorer for Oil and Gas Industry 

      Gupta, Monika; Srivastava, Smriti; Chaudhary, Gopal; Khari, Manju; Parra Fuente, Javier (1) (World Scientific, 2020)
      In a power distribution system, faults occurring can cause voltage sag that can affect critical loads connected in the power network which can cause serious effects in the oil and gas industry. The objective of this paper ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja