• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Voltage Regulation using Probabilistic and Fuzzy Controlled Dynamic Voltage Restorer for Oil and Gas Industry

    Autor: 
    Gupta, Monika
    ;
    Srivastava, Smriti
    ;
    Chaudhary, Gopal
    ;
    Khari, Manju
    ;
    Parra Fuente, Javier (1)
    Fecha: 
    2020
    Palabra clave: 
    dynamic voltage restorer; Gaussian mixture model; generalized fuzzy model; Mamdani-Larsen model; Takagi-Sugeno model; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/13707
    DOI: 
    https://doi.org/10.1142/S0218488520400139
    Dirección web: 
    https://www.worldscientific.com/doi/abs/10.1142/S0218488520400139
    Resumen:
    In a power distribution system, faults occurring can cause voltage sag that can affect critical loads connected in the power network which can cause serious effects in the oil and gas industry. The objective of this paper is to design and implement an efficient and economical dynamic voltage restorer (DVR) to compensate for voltage sag conditions in the oil and gas industry. Due to the complexity and sensitivity of loads, a short voltage sag duration can still cause severe power quality problems to the entire system. Dynamic Voltage Restorer (DVR) is a static series compensating type custom power device. The overall efficiency of the DVR largely relies on the effectiveness of the control strategy governing the switching of the inverters. It can be said that the heart of the DVR control strategy is the derivation of reference currents. This paper deals with the extraction of reference current values using a controller based on a combination of probabilistic and fuzzy set theory. The basis of the proposed controller is that Gaussian Mixture Model (GMM) which is a probabilistic approach can be translated to an additive fuzzy interface system i.e. Generalized Fuzzy Model (GFM). The proposed controller (GMM-GFM) initially optimizes the membership functions using GMM and the final output is calculated using GFM in a single iteration i.e. with no recursions. In the control scheme two control loops are used: a feed-forward loop that uses the Proportional and Integral (PI) controller and the feedback loop uses GMM-GFM based controller. The controller is implemented and respective simulations are performed in the MATLAB SIMULINK environment for three-phase, three-wire distribution system with various issues. A comparative analysis is then done amongst all the three controllers which are based on the T-S, ML, and GMM-GFM modes respectively. The simulation results of this comparison rank the DVR with the GMM-GFM controller first, followed by the fuzzy logic Mamdani model and then with the fuzzy logic T-S model. © 2020 World Scientific Publishing Company.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    23
    4
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Optimizing Fast Fourier Transform (FFT) Image Compression using Intelligent Water Drop (IWD) Algorithm 

      Kaur, Surinder; Chaudhary, Gopal; Dinesh Kumar, Javalkar; Pillai, Manu S.; Gupta, Yash; Khari, Manju; García-Díaz, Vicente; Parra Fuente, Javier (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      Digital image compression is the technique in digital image processing where special attention is provided in decreasing the number of bits required to represent a digital image. A wide range of techniques have been developed ...
    • An Enhanced Texture-Based Feature Extraction Approach for Classification of Biomedical Images of CT-Scan of Lungs 

      Srivastava, Varun; Gupta, Shilp; Chaudhary, Gopal; Balodi, Arun; Khari, Manju; García-Díaz, Vicente (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Content Based Image Retrieval (CBIR) techniques based on texture have gained a lot of popularity in recent times. In the proposed work, a feature vector is obtained by concatenation of features extracted from local mesh ...
    • Exploiting feature space using overlapping windows for improving biometric recognition 

      Kaur, Surinder; Chaudhary, Gopal; Srivastava, Smriti; Khari, Manju; González-Crespo, Rubén (1) (Computers&Electrical Engineering, 2021)
      Biometrics is a highly researched topic due to its importance in security, surveillance, and authentication systems. Granulation is the procedure of partitioning data into windows. Two novel feature extraction techniques ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja