• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training

    Autor: 
    Casado-Vara, Roberto
    ;
    Martin del Rey, Angel
    ;
    Pérez-Palau, Daniel
    ;
    de-la-Fuente-Valentín, Luis
    ;
    Corchado, Juan M.
    Fecha: 
    2021
    Palabra clave: 
    downpour strategy; LSTM; parameter averaging; pattern extraction; time series forecast; web traffic forecast; Scopus; WOS(2)
    Revista / editorial: 
    Mathematics
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11560
    DOI: 
    https://doi.org/10.3390/math9040421
    Dirección web: 
    https://www.mdpi.com/2227-7390/9/4/421
    Open Access
    Resumen:
    Evaluating web traffic on a web server is highly critical for web service providers since, without a proper demand forecast, customers could have lengthy waiting times and abandon that website. However, this is a challenging task since it requires making reliable predictions based on the arbitrary nature of human behavior. We introduce an architecture that collects source data and in a supervised way performs the forecasting of the time series of the page views. Based on the Wikipedia page views dataset proposed in a competition by Kaggle in 2017, we created an updated version of it for the years 2018–2020. This dataset is processed and the features and hidden patterns in data are obtained for later designing an advanced version of a recurrent neural network called Long Short-Term Memory. This AI model is distributed training, according to the paradigm called data parallelism and using the Downpour training strategy. Predictions made for the seven dominant languages in the dataset are accurate with loss function and measurement error in reasonable ranges. Despite the fact that the analyzed time series have fairly bad patterns of seasonality and trend, the predictions have been quite good, evidencing that an analysis of the hidden patterns and the features extraction before the design of the AI model enhances the model accuracy. In addition, the improvement of the accuracy of the model with the distributed training is remarkable. Since the task of predicting web traffic in as precise quantities as possible requires large datasets, we designed a forecasting system to be accurate despite having limited data in the dataset. We tested the proposed model on the new Wikipedia page views dataset we created and obtained a highly accurate prediction; actually, the mean absolute error of predictions regarding the original one on average is below 30. This represents a significant step forward in the field of time series prediction for web traffic forecasting.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    93
    87
    104
    81
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Semi-Automatic 3D Reconstruction of Atheroma Plaques from Intravascular Ultrasound Images Using an ad-hoc Algorithm 

      Martínez, Javier; Pérez-Palau, Daniel; Cilla, Myriam; Garrido, Neus; Larrañaga, Ane; Pérez-Rey, Ignacio (Mathematics, 2023)
      The occurrence of atheroma plaques in the arteries can eventually obstruct them, leading to diseases such as atherosclerosis, which can cause, among others, a myocardial infarction or a stroke. As a consequence, it is ...
    • Learning Management Systems Activity Records for Students' Assessment of Generic Skills 

      de-la-Fuente-Valentín, Luis ; Ortega-Gómez, Miguel ; Dodero, Juan Manuel; Burgos, Daniel ; Balderas, Antonio (IEEE Access, 2018)
      Students' acquisition of generic skills is a key to their incorporation into the job world. However, teachers encounter several difficulties when measuring their students' performance in generic skills. These difficulties ...
    • Emerging Technologies Landscape on Education. A review 

      de-la-Fuente-Valentín, Luis; Carrasco, Aurora; Konya, Kinga; Burgos, Daniel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2013)
      This paper presents a desk research that analysed available recent studies in the field of Technology Enhanced Learning. The desk research is focused on work produced in the frame of FP6 and FP7 European programs, in the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja