• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

    Autor: 
    Ibrahim, Wan Nur Hidayah
    ;
    Anuar, Syahid
    ;
    Selamat, Ali
    ;
    Krejcar, Ondrej
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    ;
    Fujita, Hamido
    Fecha: 
    2021
    Palabra clave: 
    Behavior-based analysis; botnet; flow-based feature selection; k-nearest neighbor; structure independent; Scopus; WOS(2)
    Revista / editorial: 
    IEEE Access
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11453
    DOI: 
    https://doi.org/10.1109/ACCESS.2021.3060778
    Dirección web: 
    https://ieeexplore.ieee.org/document/9359784
    Open Access
    Resumen:
    A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being detected by a security system. The traditional method of detecting botnets commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer framework for botnet detection using machine learning algorithms that consist of a filtering module and classification module to detect the botnet's command and control server. We highlighted several criteria for our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet in encapsulated technique. We used behavior-based analysis through flow-based features that analyzed the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    61
    42
    77
    99
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Enhancing big data feature selection using a hybrid correlation-based feature selection 

      Mohamad, Masurah; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén ; Herrera-Viedma, Enrique; Fujita, Hamido (2021)
      This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search ...
    • Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network 

      Chan Chiu, Po; Selamat, Ali; Krejcar, Ondrej; Kuok Kuok, King; Herrera-Viedma, Enrique; Fenza, Giuseppe (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility ...
    • Dealing with group decision-making environments that have a high amount of alternatives using card-sorting techniques 

      Morente-Molinera, Juan Antonio; Ríos Aguilar, Sergio ; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Expert Systems with Applications, 01/08/2019)
      Due to the appearance of Web 2.0 technologies and smartphones, the amount of information available to carry out group decision-making processes has increased dramatically. Therefore, there is a need for group decision-making ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja