• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Enhancing big data feature selection using a hybrid correlation-based feature selection

    Autor: 
    Mohamad, Masurah
    ;
    Selamat, Ali
    ;
    Krejcar, Ondrej
    ;
    González-Crespo, Rubén (1)
    ;
    Herrera-Viedma, Enrique
    ;
    Fujita, Hamido
    Fecha: 
    2021
    Palabra clave: 
    big data; correlation-based feature selection; deep learning; DRSA; feature selection; neural network; support vector machines (SVM); Scopus; JCR
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13225
    DOI: 
    https://doi.org/10.3390/electronics10232984
    Dirección web: 
    https://www.mdpi.com/2079-9292/10/23/2984
    Open Access
    Resumen:
    This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search (BFS), and dominance-based rough set approach (DRSA) methods. This study aims to enhance the classifier’s performance in decision analysis by eliminating uncorrelated and inconsistent data values. The proposed method, named CFS-DRSA, comprises several phases executed in sequence, with the main phases incorporating two crucial feature extraction tasks. Data reduction is first, which implements a CFS method with a BFS algorithm. Secondly, a data selection process applies a DRSA to generate the optimized dataset. Therefore, this study aims to solve the computational time complexity and increase the classification accuracy. Several datasets with various characteristics and volumes were used in the experimental process to evaluate the proposed method’s credibility. The method’s performance was validated using standard evaluation measures and benchmarked with other established methods such as deep learning (DL). Overall, the proposed work proved that it could assist the classifier in returning a significant result, with an accuracy rate of 82.1% for the neural network (NN) classifier, compared to the support vector machine (SVM), which returned 66.5% and 49.96% for DL. The one-way analysis of variance (ANOVA) statistical result indicates that the proposed method is an alternative extraction tool for those with difficulties acquiring expensive big data analysis tools and those who are new to the data analysis field.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    2
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Multilayer Framework for Botnet Detection Using Machine Learning Algorithms 

      Ibrahim, Wan Nur Hidayah; Anuar, Syahid; Selamat, Ali; Krejcar, Ondřej; González-Crespo, Rubén (1); Herrera-Viedma, Enrique; Fujita, Hamido (IEEE Access, 2021)
      A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being ...
    • A recommender system based on implicit feedback for selective dissemination of ebooks 

      Núñez-Valdez, Edward Rolando; Quintana, David; González-Crespo, Rubén (1); Isasi, Pedro; Herrera-Viedma, Enrique (Information Sciences, 10/2018)
      In this study, we describe a recommendation system for electronic books. The approach is based on implicit feedback derived from user's interaction with electronic content. User's behavior is tracked through several ...
    • Dealing with group decision-making environments that have a high amount of alternatives using card-sorting techniques 

      Morente-Molinera, Juan Antonio; Ríos Aguilar, Sergio (1); González-Crespo, Rubén (1); Herrera-Viedma, Enrique (Expert Systems with Applications, 01/08/2019)
      Due to the appearance of Web 2.0 technologies and smartphones, the amount of information available to carry out group decision-making processes has increased dramatically. Therefore, there is a need for group decision-making ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja