• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem

    Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network

    Autor: 
    Chan Chiu, Po
    ;
    Selamat, Ali
    ;
    Krejcar, Ondrej
    ;
    Kuok Kuok, King
    ;
    Herrera-Viedma, Enrique
    ;
    Fenza, Giuseppe
    Fecha: 
    09/2021
    Palabra clave: 
    imputation; missing rainfall data; principal component analysis; sine cosine neural network; deep learning; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13004
    DOI: 
    https://doi.org/10.9781/ijimai.2021.08.013
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3001
    Open Access
    Resumen:
    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SCFFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai6_7_4.pdf
    Tamaño: 1.972Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 7, september 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    50
    118
    194
    330
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    37
    93
    97

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Enhancing big data feature selection using a hybrid correlation-based feature selection 

      Mohamad, Masurah; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén ; Herrera-Viedma, Enrique; Fujita, Hamido (2021)
      This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search ...
    • Multilayer Framework for Botnet Detection Using Machine Learning Algorithms 

      Ibrahim, Wan Nur Hidayah; Anuar, Syahid; Selamat, Ali; Krejcar, Ondrej; González-Crespo, Rubén; Herrera-Viedma, Enrique; Fujita, Hamido (IEEE Access, 2021)
      A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being ...
    • Performance and Convergence Analysis of Modified C-Means Using Jeffreys-Divergence for Clustering 

      Seal, Ayan; Karlekar, Aditya; Krejcar, Ondrej; Herrera-Viedma, Enrique (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      The size of data that we generate every day across the globe is undoubtedly astonishing due to the growth of the Internet of Things. So, it is a common practice to unravel important hidden facts and understand the massive ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja